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Abstract

The paper considers stochastic dynamic optimization problems where a tentative
numerical solution has been found. Tt uses the Euler residuals along simulated paths
of the model to estimate the accuracy of the proposed solution. The main measure
of accuracy is the the reduction in the criterion function from using the numerical
rather than the exact solution. Estimates of the approximation error of the policy
function can also be computed. The method can handle models with nonlinear
inequality constraints. In a broad class of dynamic general equilibrium models,
the method can be used to characterize the precision of a numerical solution by a
bounded-rationality measure of the optimizing agents. The method is illustrated by
an application to the one-dimensional stochastic growth model, where it is shown

to provide quite precise estimates of the errors in the value and the policy function.
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1 Introduction

With the necessity to solve more and more complicated dynamic optimization and dy-
namic general equilibrium models, economists usually resort to approximate numerical
methods, including dynamic programming algorithms, linear-quadratic or higher or-
der approximations, projection methods or even evolutionary algorithms. Very little
is known about the general accuracy properties of these methods (except for dynamic
programming, cf. Santos and Vigo-Aguiar, 1998), and it seems necessary to analyze the
accuracy of a proposed solution in each specific case, to make sure that it is sufficient for
the problem at hand. Often there are several numerical solution procedures available,
and the task is to choose the best one.

Assume we have computed an approximate numerical solution to a given problem.
If we deal with a dynamic optimization problem, we would like to know how far the
solution is away from the exact solution in value terms. That means, what is the loss in
the objective function that results from using the numerical approximation rather than
the exact solution? The answer to this question would help us to decide whether it makes
sense to invest more resources to obtain a more precise solution. If the problem is, more
generally, an economic model where maximizing economic agents interact, with possible
externalities, distortions etc., a relevant question is whether the proposed solution is
an e-equilibrium in the sense that every agent follows a boundedly rational strategy
where her loss in utility is smaller than ¢ compared to the exactly optimal strategy,
given the dynamic behavior of other agents (cf. Judd, 1992, Section 5.2, who defines the
e-equilibrium in terms of Euler residuals).

This paper develops a method to answer the above questions, without knowing
the exact solution, and by solving a much simpler type of problem than the dynamic
optimization problem under consideration. The method can be applied to most models
used in macroeconomics. All that is needed is an estimate of the policy function of all
agents, and the possibility to compute the Euler residuals from the model simulations
using the estimated policy functions.

I think that the most essential information about the quality of a numerical solution
is the value loss resulting from using that solution. In addition, one often wants to
know additional aspects of accuracy, for example: does the numerical policy function
approximate well the exact policy? does the solution describe correctly the reaction of
policy functions to external parameters (uncertainty, taxes etc.)? The paper therefore
also deals with estimating the error in the policy function.

Thorough comparisons of different numerical methods which are found in the liter-

ature (see, e.g., Taylor and Uhlig, 1990, Christiano and Fisher, 2000, Collard, Féve and



Juillard, 2000, Benitez-Silva, Hall, Hitsch, Pauletto and Rust, 2000) usually employ a
variety of statistics and evaluation criteria. However, when the exact solution is not
known (which is the relevant case), not many methods are available to estimate the ac-
curacy (cf. Section 7 for a discussion of related approaches). The most useful instrument
seems to be the Euler residual (see Judd, 1992, who also provides a way to normalize
the residuals so that they have an economic interpretation). Santos (2000) derives the-
oretical relationships between the size of the Euler residuals and the deviations of the
policy function and the value function from their exact values. The derived relationship
is in the supremum norm of these variables.

The present paper follows Santos (2000) in measuring the approximation error in the
value and the policy function, but it is complementary to that paper in the sense that
it does not estimate the supremum (or maximum) of the error over the state space, but
either the error at a particular point in the state space or the average error over a part
of the state space. While Santos (2000) mainly derives theoretical bounds that are easy
to compute but relatively loose, the present paper uses methods that are more computer
intensive but give tight estimates. An important generalization of the present method
compared to Santos (2000) is the fact that it can handle models with occasionally binding
inequality constraints.

In numerical analysis it is more common to compute error bounds in supremum
norms rather than average errors. If we can actually show that the supremum of the
approximation error is below some required threshold level, we can have the highest
level of confidence in a method. The disadvantage is that the supremum approach
may often be non-operational if the accuracy of the solution at hand is not very high,
since accuracy measures in supremum norms are very conservative. First, because the
supremum estimates, necessarily based on conservative assumptions, usually give an
estimated supremum error that is much bigger (by one or two orders of magnitude)
than the true supremum error (cf. Section 2). This is a well known phenomenon in
numerical analysis. Second, the supremum error criterion itself may be too demanding.
Consider a numerical solution that provides the approximately right policy in almost
all circumstances, but makes substantial mistakes under some circumstances. If these
circumstances are very unlikely to ever occur, this numerical method may be easily good
enough for a given purpose. In the same way, if we have to decide between two methods
to use, we would often prefer the one with the lower average error over the one with the
lower supremum error. Measures of average value loss, as presented in this paper, are
therefore a useful alternative to supremum errors.

The plan of the paper is as follows. Section 2 provides a heuristic discussion of the

relationship between Euler residuals and approximation errors. Section 3 describes the



class of optimization problems that we are going to study. Section 4 derives estimates of
the approximation error in the value function, while the error in the policy function is
treated in Section 5. Numerical examples are provided in Section 6. Section 7 concludes
by discussing the conditions when it appears most appropriate to employ the method

of this paper.

2 Euler residuals and approximation errors

The method of the present paper makes essential use of the Euler residuals. The purpose
of this section is therefore to gain some intuitive understanding about the relationship
between the Euler residuals and the value and policy error.

One potential problem is that the Euler equation alone is not a sufficient condition
for a solution. An optimization problem usually has infinitely many paths that satisfy
the Euler equation, i.e., have zero Euler residuals. Fortunately, it is well known that
the Euler equation together with a transversality condition are sufficient for concave
problems. A non-optimal solution which satisfies the Euler equation therefore violates
the transversality condition or some feasibility condition. This implies that, at some
point in time, it will do something that is either obviously non-optimal (in the standard
consumption problem, letting the ratio of consumption to capital go to zero) or impos-
sible (negative capital, growing at the rate of interest). Since a reasonable numerical
method excludes this kind of anomalous behavior, the inaccuracy of the solution will
sooner or later show up in the Euler residuals. We will detect the inaccuracy if we keep
track of the Kuler residuals over time.

Unfortunately, in order to get a precise estimate of the value and policy error, it is
not enough to look at the maximum Euler residual. Let usillustrate this at a very simple
case. Consider the deterministic finite horizon consumption problem with interest rate

and discount factor equal to zero. The household maximizes

Z u(ce) (1)

t=1

with #/(c) > 0 and u”(c) < 0, subject to the constraint

T
th =K (2)

with given initial capital K. The Kuler residual for this problem is

u'(ce) — ' (er4) (3)



and the optimal consumption path is
ca=c"=K/T (4)

Now assume that ' is even and consider two small deviations from the optimal policy
(cf. Figure 1)

c*—Le fort odd

Ci = : (5)
c+ %e for ¢t even
1
C'f:c*—l—e(t—T%) (6)

for small e. Both policies satisfy the budget constraint (2). Up to a quadratic approxi-
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Figure 1: Example: finite horizon consumption problem

mation about ¢*, the Euler residual for both policies and all ¢ is given by R: = u"(c*)e,
but the maximal approximation error of the policy function is 0.5¢ for C}! and %6 for
C?. The loss in value is T|u"(c*)|€? for C} and |u”(c*)| E?:T/2+1 e (t - %)2 for C2.

The second policy has a much bigger error, because the mistake at a given point,
as measured by the Euler residual, steadily adds up over time, while in the first policy
the errors tend to cancel over time. This shows that there is no functional relationship
between the maximum of the Euler residuals and the maximal value and policy error. A
theory that relates maximal Euler residuals to approximation errors will in most cases
substantially overestimate the error, since it has to account for the worst possible case

(cf. the results in Santos, 2000, Section 4.3). If we want to obtain exact error estimates



based on Euler residuals, we therefore have to monitor the Euler residuals systematically
over time. The present paper describes a method which does exactly this.

Note also that, with a given maximal Euler residual, the policy can deviate the more
from the optimal policy, the longer the time horizon. In an infinite horizon problem,
long time horizon should be interpreted as low discount factor, which explains the role

of the discount factor in Santos (2000, Theorem 3.3).

3 The Model

We assume that the agent (or each agent in the economy) solves an optimization prob-

lems of the form

max Eg Z BUE (x4, ut, 1) (7a)
UQ YUY gues —0
subject to
Trp1 = u +&(z41), Er&(ze41) =0 (7b)
G(;ft, U, Zt) Z 0 (7C)
T given (7d)

and the transversality condition
Eg fli}m B (4, ut, 2t) -2t = 0 (7e)

Here, z; € R?% is a vector of endogenous state variables, u; € R? is a vector of control
variables, and z; is a vector of exogenous random variables (in a general equilibrium
model, z; would also include all the aggregate variables that are exogenous to the in-
dividual decision maker). We assume that z; is a Markovian process with transition
function Q(.,.) (defined as in Stokey and Lucas, 1989, p.212). The random vector can
appear in the objective function as well as in the dynamic equation, with the require-
ment that E;&(z;41) = 0. In other words, the dynamic equation (7b) is written such
that the control u; is the expected value of next period’s state vector, which simplifies
notation. The function F'(z,u,z) is assumed to be measurable in z, and three times
continuously differentiable in (z,u) for all z. We also assume that F is strictly concave
in 2 and u.

The set of feasible controls I'(z, z) = {u|G(z,u,z) > 0} is determined by the con-
straints (7c), where G is a function with values in ®?. We assume that G(z,u, z) is
concave in (z,u) for all z, which implies that the set of feasible combinations (z,u) is
convex. Note that (7c) could be equivalently written in a way that G is only quasicon-

cave. For our purposes (cf. Section 4.4), however, it is necessary to write the constraints



in a form that G is really concave. The above assumptions guarantee that the Kuler
equation together with the transversality condition (7e) is sufficient for an optimum
(Stokey and Lucas 1989, Theorem 4.15). For some results it is necessary to exclude

increasing returns to scale by the assumption
Moz + (1 —a)z’,2) D al'(z,2) + (1 — a)['(2/, 2), Ve, 2',2,0< a < 1 (8)

This guarantees that the value function of problem (7) is concave in 2 (Stokey and Lucas
1989, Theorem 4.8).

We assume that the state variables (z, z) take values from a compact state space ).
The continuity of the above functions and their derivatives, together with the compact-
ELE L NG 1G] <

LV for i =1,2;5 = 1,2. where ||.|| is the supremum norm on vectors and matrices.

ness assumption implies that there is a constant V such that |

This allows us to infer, for example, that
G +6,u+6,2) = Gla,u, ) <Ton+0 () Voe:loll, el <n  (9)

Compactness of the state space is adopted mainly to simplify proofs. What is critical is
that the difference in utility between the true solution and the numerical solution along
any simulated path grows at a rate lower than the discount rate. Compactness is a way to
guarantee this: with ) compact, (7b) implies that the policy function u(z, z) is bounded,
and then F is bounded since it is continuous, and so the value function is bounded. While
economic models are often defined on unbounded state spaces, numerical solutions have
usually to be computed on a bounded set, often after a suitable transformation of the
state variables.

Finally, one should note that (7) is not the most general stochastic optimization
model, but the great majority of models studied in macroeconomics can be brought into
this form (it is slightly more general than both model variants in Stokey and Lucas,
1989, p.239f.). This formulation will help to keep the notation as concise as possible,

since the Euler equation then takes the simple form

Riy1 = Fy (Zt, Ut, Zt) + B E: Fy (-77t+1’ Ut41, Zt+1) =0 (10)

As discussed above, the Euler residuals R; of the numerical solution will form the basis

for the estimation of the errors in the value and policy function.

4 Estimating the error in the value function

We assume that a numerical solution for the problem (7) is provided, and our task is to

estimate the size of the approximation error of this solution. In this section we measure



accuracy as the decrease in the objective function that results from using the approx-
imate rather than the exact solution. Section 5 will discuss the problem of measuring

the error in the policy function.

4.1 TIllustration: the deterministic case

This section discusses briefly and somewhat heuristically the deterministic case. This
will provide some intuitive understanding of the accuracy estimates, even if we will later
see that the analysis in the stochastic case differs substantially from the deterministic
analysis.

Consider the deterministic version of the model with criterion function F(2, u;) and
T¢41 = ;. Assume we have simulated the path Z;, for ¢ = 0,...,7, by the numerical
solution, starting from Zy = 9. Assume that the model is stable and that the simulated
path converges at least approximately to the true stationary state. We can then choose
T large enough so that what happens after time 1" is irrelevant, given a required degree
of accuracy. The loss in value from using the numerical rather than the exact solution
is therefore given, up to the required degree of accuracy, by the loss that results from
choosing a suboptimal path from zy to Z7. This loss is given by the solution to the

problem
T

cmax Y B (R by, B +8) = Fd, #14) (11a)
0301 4.-- =0

subject to (we abstract for the moment from inequality constraints)
dr=0 (11b)

Note that
(S_l =0 (12)

since zj; = &g = x¢ is given. The optimal d,’s give us the policy error of the numerical
solution, and the value function of this problem at ¢ = 0 and z( gives us the value loss.

Of course, problem (11) is just a finite horizon version of problem (7) and equally
hard to solve. However, if the numerical solution Z; is already close to the true solution,

the above problem is approximated well by the locally quadratic approximation

T -
FA JUR 1 : . Os—
max Zﬁt 5;_1F1 (.’ﬂt, $t+1) + 5£F2(:ct, mt-}-l) —I— 5 (5t_1’, 575/) D2F($t, ;2375+1) ( ; 1)]
t=0

507517--- — 1

where F) and F3 are the column vectors of partial derivatives w.r.t. the first and second
argument, prime denotes transposition and D?F is the Hessian of F. This problem can
be solved by backward induction, with little numerical effort. The procedure gives an

estimate of the policy error § as well as the value loss from the approximation at zg.



(By iterating the quadratic approximation, we would probably converge to the exact
solution, but this is not our concern here.)

From this we learn that, if we already have a reasonably good numerical solution,
evaluating its accuracy is a much simpler task then finding the solution in the first
place. The reason is that we can use the information that is contained in the solution,
which gives us the realized paths about which we can locally approximate. Obviously,
the precision with which we can measure the accuracy of the solution depends itself
on the accuracy of the solution: the smaller the size of the §;’s, the better the locally
quadratic approximation. This will be made more precise in the next section. Since
economic problems usually work with very smooth functions, we can expect to obtain
good estimates of the precision even if the numerical solution is rather weak. The

numerical examples of Section 6 will confirm this.

4.2 Stochastic model: an upper bound

From now on we deal with the stochastic model of Section 3. In this and the next sub-
section, we abstract from inequality constraints and assume that the exact as well as the
proposed numerical solution are inner solutions to this problem. Inequality constraints
will be dealt with in Subsection 4.4.

Again, we follow the idea of estimating the value and policy error along realized
paths, but the argument is now more complex, for the following reason. Solving the
deterministic program (11) backward in time, we can compute §; if we know next period’s
value function in a neighborhood of Z;;;. This problem can be well approximated then
by a locally quadratic approximation about the (#;,Z;4;), since the approximation needs
to hold only over a range of values of the order of the &;’s. In contrast, to find the &
in a stochastic problem, we need to know the value function at all possible realizations
of 2,4, that start from Z;. Since the shocks can be large, we need the value function
in a big part of the state space, and a quadratic approximation cannot be accurate in
general. In particular, one cannot carry over the analysis of the deterministic case to
the stochastic model by solving the stochastic version of the quadratic approximation
about the realized path. It is therefore not possible to compute the value loss with the
same precision as in the deterministic case. However, the analysis of this section will
provide a tight upper bound to the value loss which is based on purely local quadratic
approximations.

We first introduce some notation. A realized path of the optimal solution will always
be denoted by (2}, uy), a path of the numerical solution by (&, #;). These paths depends
on the (given) initial value zg and a realization of the shocks zg, z1, .. .. Let us denote the

history of shocks zg, z1, ..., 2 by z'. Because of the Markov structure of the problem,



the optimal policy u} is a function of the vector of state variables, uf = U* (27, z).
We also assume that the policy 4; = U (&4, z¢) provided by the numerical solution is a
function of the state vector. This also implies that, with a fixed initial state zg, the
realizations z}, uf, #; and i, are a function of the history of shocks z'. All expectation
operators should be understood as referring to the distribution of the shocks zg, z1, .. ..
Formally, the operator E; means expectation w.r.t. the g-algebra generated by 2!. We
will say that a random variable is --measurable to express that it is a function of 2f. We
define the policy error & (zt) = uy (zt) — iy (zt) =U* (af, ) — U (%4, z¢). The notation
stresses the fact that &; has to be understood as a function of the history of shocks z?,
not of the current state vector. From (7b) it follows that the optimal state z} satisfies
ry = T¢ + O1.

Using this notation, we can now define the approximation error A of the value

function as
o0
A=Eo B F (af,uf,2) = F (30, s, )|
t=0

We truncate the error term after I’ periods and define

T
Alrune = g Zﬁt [F (x},uf, z0) — F (T4, e, 21) }
t=0

T
= ko Zﬂt [F'(8¢ 4 61, b + &1y 22) — B (T, Ty, 21)] (13)
t=0
where §_; = 0 by construction. The difference between A and A'“"¢ is given by

|A=Afrme|| = Eo BTV (2%, ) =W (741) ||, where V (2) is the (exact) value function
at point 2, and W (z) is the value reached under the policy of the numerical solution.
The boundedness of F shows that [|[A — A"""¢|| goes to zero for " — o0, so we can
concentrate on measuring A%"¢ rather than A if we choose T large enough.

As noted above, the precision of our accuracy estimates will itself depend on the
accuracy of the numerical solution, and on the time horizon for which we simulate. To

make this precise we define

1 = max {SUP 186 (=), 5T/3} (14)

t,zt

Note that n is finite since the policy functions are bounded. We will show that the
true error A is of order O (772). In estimating the upper bound, we will rely on some
Taylor approximations, whose effect on the estimate will be shown to be of order O (7}3).
Let us first give a precise definition of the order terms. Assume that some variable y

is a function of the numerical solution. To say that x is of order O (™) then means

10



the following. For any sequence of numerical solutions, indexed by n, such that the
corresponding sequence of supremum errors 7, goes to 0 for n — oo, |x/n7| < M for
some constant M. To say that y is of order o (™) means that, for any such sequence,

limy, 00 [X/77| = 0. Note that with the above definition of n we can write A = A?runc 4
O (n).

To estimate the upper bound, we proceed in three steps. First, we derive a simple
expression for A% based on a quadratic approximation. Second we show a way to
compute an upper bound to this quadratic approximation based on an estimate of the

policy error. Third, we show how to obtain the policy error estimate.

Step 1: Quadratic approximation to A"

We start with a second order approximation of (13) about (Z, ;). Since the third

partial derivatives of I’ are bounded, Taylor’s theorem shows that
T

AP = B, Zﬁt [5;_1F17t (&4, Ty, 2¢) + 6, Fo 4 (84, Ty, 2¢)

t=0
1 R A A
+ 5 (54_1 Fii g (8¢, 6, 2¢) 041 + 257,5_1F12,t (&4, U, 2¢) O + 57,5F22,t (&4, Uy, 2¢) 51‘)}

— Atrunc +O (773) (15)
Using the definition
Quad (f“, a, b, t) = a;_lb‘u’tbt_l + a;_lFm,tbt + a;FQI,tbt—l —|— (Z;FQQ’tbt (16)

for any function F and series of vectors a and b, the following lemma derives a simpler
expression for A?P". (When the arguments of the derivatives F} ; etc. are omitted, it

should always be understood that they are taken at the simulated points (Z;, @, 2¢).)

Lemma 1.

T
1
AP = 2 Eo Y f'Quad (F,8,5;1) + 0 (v°) (17)

1=0

Proof. Along any path z7*! the approximation errors &; satisfy the Euler equation
Fy (B¢ 4 01, e + 04, 2¢) + BE: Fi (Z441 + 8¢y U1 + dig1, 2041) =0 (18)
Using again Taylor’s theorem, (18) can be approximated as

Foi 4 Fo140i—1 + Foo 0t + BE: (F1 t41 + Fi14410t + Fio4410i41) = (19)
Ripr + For 4021 + (F22,t + B E; FH,H—]) & + B Ey [F12,t+15t+1] =0 (772) (20)

11



If we premultiply (19) by 4, use the fact that &, is a function of z* so that ] E;(y) =
E: [0;x] (Billingsley 1986, Theorem 34.3) for any vector of random variables y, take

expected values and use the law of iterated expectations, we get

Bo [0 Fa.0 + 81 Fo1 idimn + 61 Faa iy
+ B (84 F1 041 + 61 F11,0416 + 81 F12,4410041) } =0 (7°) (21)
Multiplying (21) by 8%, summing up for ¢ = 0,...,7 — 1 and using §_; = 0, we get
T

Eo Z B [52_1F1,t + 8 Foq 4 81—y Fi1 4001 + 26;_y F12.46¢ + 57€F22,t5t}

t=0

=Eop" {F‘Z,T(ST + (5,TF21,T5T—1 + 5,TF22,T5T” +0 (773) =0 (773) (22)

where we have used 87 < n? (cf. (14)) as well as the following reordering of terms:

T
Zﬂt (5;_1F11,t(st—1 + 28,1 Fi240: + 525'22,75575)
t=0
Z 5 101 4001 + 81 F 9246, + (5 Fi1410¢ + 61819 t+15t+1)]
=0
+ 0L, Fi100-1 4+ 0L, Fia 000 + BT (5%F21,T5T—1 + 5&*F22,T5T) (23)
Using (22) in (15) we obtain (17). O

Our task therefore reduces to estimating the quadratic term in (17), which is non-
negative, since the concavity assumption on F' means that Quad (F, 6, ;1) is a negative

definite quadratic form.

Step 2: Computing an upper bound for A’PP’" using an estimate of &

As discussed at the beginning of this section, we cannot “compute” the §;’s in the
stochastic model, not even for a given realization of 27. This becomes clear from
Equ. (20): the Euler residual R;y; can be measured, but the expectation 8 E; [Fig4410¢41]
cannot, because it requires the values of d;y; off the realized path. Computing &y to ér
recursively would require the values of § at all realizations starting from zg.

However, we will see below that we can use an equation similar to (20) to obtain an
estimate of &, which we denote by &;. If we compute (17) with &; rather than &;, we can

define

1 T
—5 Z 'Quad (F, 6, 8;1) (24)
t=0



Denoting the error in estimating 8, by &, = 8, — &;, we get from (17)

T
1 - ~
L Y B'Quad (F,8 - 6,6 - &;1) (25)
t=0
— AQPPr _ 9 ACross + Aesterr‘ + 10) (,'73) (26)
where
cross 1 $ i F)
L > B'Quad (F, 8, 5t) (27)
t=0
esterr — 1 ¢ t 55
Acfste :—iEOZﬂQuad(F,(S,o;t) (28)
t=0

Since F'(z,u,z) is concave in (z,u), we have A"

that A" > A®PPT 4 O (7}3) if we can show that

> 0, and we reach the conclusion

ACOSs — () (7]3) (29)

In other words, under this condition, A" is an upper bound for A" up to a cubic
error term (note from (17) that A®"?" is of order O (n?)). We can compute A*" from
(24) by Monte-Carlo techniques, to any desired degree of accuracy.

Step 3: Estimating &

We still have to find an estimate &; of & such that condition (29) is satisfied. To do
this we start from (19). While the term E; I} ;41, the expectational part of the Euler
equation, can in principle be measured with arbitrary precision, we allow for generality
that it be replaced by an estimate [y, that has the property E; IT, 1 = E¢ I ¢41.
Any estimate of the expectation obtained by Monte-Carlo integration has this property.
As discussed above, the term E;[Fi14416: + Fig4418¢41] is not available, because we
have no estimate of d;41 off the realized path. In the following we simply ignore the
expectation operator E; and use [FH,H_lSt + f"lg’t+1(§t+1] (note that the realization can
be interpreted as an unbiased estimate of its expected value). Then we obtain the second

order difference equation in &,
Fyy + F21,tgt—1 + F22,tgt + 8 (Ff,t.l_l + Fll,t-l—lgt + F12,t+lgt+1) =0 (30)
Imposing the boundary conditions
-1 =dr =0, (31)

Equ. (30) determines &; for any given realization of z*. An efficient way to compute the

8¢ recursively is provided in Section 4.3.

13



Lemma 2. If§; is defined by Equ. (30) and the boundary conditions (31), then Equ. (29)
holds.

Proof. Subtracting (30) from (19) and conditioning on t we get
E, {F21,tgt—1 + f52,t8t +p (f‘il,t+1gt + fﬂ12,t+lgt+1>} =0 (772) (32)

Premultiplying (32) by ¢}, using again &; E;(x) = E; [6;x], and taking expectations Eg,

we get
Eo [525’21,@_1 + 8 Fyn 0y + (521’11,t+1‘§t + 521*'12,t+1gt+1> } =0 (7°) (33)

If we multiply (33) by 8, sum up for ¢ = 0,...,7 — 1, and use the reordering (23), we

obtain

T
Bo Y 8'Quad (1,8,8:1) = B (8 Far rdr-1 + 5y Foairdr ) +0 () = O (') (34)

t=0

O
Note the following two properties of the estimate &;:

1. If the estimated Euler residual is zero for all £, Equ. (30) is a homogeneous difference
equation, and the boundary conditions (31) imply that the estimated error §; is zero

for all t.
2. & depends on the whole realization z, ..., 27, so & is not t-measurable.

The calculations of this section are summarized by the following theorem.

Theorem 1. If §; is defined by Equ. (30) and the boundary conditions (31), then
A > A+0(n?) (35)

Theorem 1 is the first main result of this paper. It shows that even in the stochastic
case, the estimated errors along realized paths can be used to estimate an upper bound
of the approximation error of the value function. The numerical results of Section 6.2
will show that this upper bound is rather tight.

It may be useful to list all sources of error that come into play in estimating A by

Avub:

1. The error from the quadratic approximation of F and the linear approximation of

the Euler equation about (Z4, @;), which together give an error which is O (77%)

2. The truncation error from the finite horizon of the simulation.
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3. The sampling error in the simulation.

4. Imprecise measurement of the Euler residual.

5. The quadratic term A",

The errors 2, 3 and 4 can be made arbitrarily small by increasing the computational
effort, using longer time horizons, more simulations etc. The error 5 cannot be decreased
by doing more simulations etc., and is quadratic in the maximal deviation, just as A"
itself. However, we know that it is positive, so we can say that A*® is an upper bound.
The error 1 depends on the nonlinearity of the model. It is a cubic function of the
maximal deviation of the simulation, so it disappears fast when the numerical solution
goes to the exact solution. For a given solution, however, it cannot be decreased, and if
the numerical solution is very imprecise, the cubic term may dominate other terms and

make that A" is not really an upper bound.

4.3 Recursive computation of the error estimate

This section provides recursive formulas for the computation of the quadratic term in
(24) for a given realization, that means, for a given history of shocks 2. The formulas

are similar to the recursions of the linear-quadratic control problem. If we define

te1 = Ty + 5F1e,t+1 (36)
we have from (30)
& = — (Faa + 5F11,t+1)_1 (F21,tgt—1 + Ry + 5F12,t+15t+1) (37)
Since 87 = 0 from (31), we get
dr—1 = ar—1 + Ar_167_3 (38a)
where
ar—y = — (Poor—1 + AP 7)™ RS (38b)
Aroi = — (Faorer + BE )™ Foyrea (38¢)

This can be used as the starting point of the following recursion. If &_H = a1+ At 8

is given with some vector a;41 and some matrix As4q, it follows from (37) that
5_75 = Uy -|— Atgt—l (39&)
with

ar = — (Fagu + BFi1 41 + 5F12,t+114t+1)_1 (Rf_l_l + ﬂplz,t+10/t+1) (39b)
Ay =— (Fage + P41 + ﬂplz,t+1l4t+1)_1 Fyy 4 (39¢)
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Iterating (39a) forward, we obtain SH_S as a function of §; for s > 0. This allows us to

define

N R I NRA & M (o
AP (811327 = _525 (55_1 (8i=1)", 85 (575_1))1) Fy ( 5, (o) ) (40)

s=t

and compute it recursively, starting with
_ 1_ _
A%b((ST_l; ZT) = —555“_1F11,T5T—1 (41)

If we have
—2Atu_|b_1((§t, ZT) = @H_l + U;+1(§t + S;‘/H_lgt (42)

for some given constant T4, vector v;4q and matrix Vy4q, it follows from (39) that

—QA?b(gt_l; ZT) = ’l_]t -|— ’U;St_l -|— 52—1‘/7,‘57,‘—1 (43&)
with
Uy = a3 Fyg 00 + 3 [ﬁt+1 + 'U;.Hat + a;‘/;f+1at] (43b)
vy = 2F12’tat —|— 2A2F22,,5at —|— 5 [A;,Ut-l-l + 2/4;‘/“_1(175] (43C)
Vi=Fii1g 4 2F124 A + AlFag 1 Ay + BAVip1 Ay (43d)

Since 6_; = 0, we finally arrive at
1 < - 1
-5 > B'Quad (F,8,8;t) = Ay (0;2") = 570 (44)
1=0

The estimate A% in (25) is the average of Au(0; 2T) over many simulated paths z7. To
compute the error at a specific point z¢ of the state space, the simulations will all start
from zg. The compute the (weighted) average of the error over the state space, we start
the simulations from different points, drawn from a suitable distribution over the state

space.

4.4 Inequality constraints

The following paragraphs show how the analysis of the last sections has to be modified
to account for occasionally binding inequality constraints of the form (7c).

Equ. (7c) defines ¢ > 0 constraints. Constraint 4, ¢ = 1,...,¢ will be written
G*(z4,us,2¢) > 0 and will be related to a Lagrange multiplier Ai, which is a function
of the state variables (z¢, z¢), satisfying the usual complementary slackness conditions
)\i >0 and )\;';Gi = 0. Tt is important to bear in mind that the G* are convex, not just
quasi-convex functions. Quasi-convex restrictions can of course always be brought into

an equivalent convex form.
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In the new framework, the Euler equation is

q
0=F; (iU?a Ufa Zl‘) + ZGZQ (iU?a Uf, Zl‘) A;('Trv Zl‘)
=1
q . .
+ B E; [Fl ($:+17 u:;+1v Zt-l-l) + ZGZI (30:4.17 u:+17 Zt+1) >‘33+1 (w:+17 Zt+1) } (45)

=1
Since the Euler equation depends on the Lagrange multipliers, it is necessary to have
numerical estimates \! (x4, z¢) available. This should not cause any problem, since most
methods (for example projection methods) compute the Lagrange multiplier function
as an element of the solution. In a dynamic programming framework, the multipliers
are not needed, but are easy to obtain once a solution has been computed. Using the

estimated Lagrange multipliers, the measured Euler residual is

RH_] = F2 (jt’ ﬁta Zt) + ZGZQ (jta ﬁta Zt) j\é(iﬁt, Zt)
%

+BE B (B, Bepry 2e01) + Y G (Boga, B, 2001) Mgy (B0, 2001) | (46)

(3

We impose the following regularity conditions on the numerical policy function and

Lagrange multipliers:
Assumption 1. The approzimate policy U() and the estimated Lagrange multipliers
N ()

i) are both functions of the state variables (z, z),

ii) satisfy for all z, z and i the complementary slackness conditions
M(z,2) >0,  G'(2,0(x,2),2) 20,  N(z,2)G(2,U (2,2),2) =0

The error bound A" will now depend not only on the policy error &, but also on the
properties of the estimated Lagrange multipliers. We therefore update our definition of

the supremum error to
e = max {sutp_ 18"8:(), supylW(w, 2) = X(z, Z)H,ET/B} (47)
t,zt r,z)€

Using the abbreviations

q
ij,t = ij (itv ’&ta 275) + Z )\Z(it’ Zf)G;'k ('%ta ﬁta Zt) ) ja k= la 2

=1

. N on .- . -
Quad (H,a,b;t) = a;_ Hyy 1bi_y + af_ Hyg4by + aiHoy ¢beq + ayHog 4hy
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the estimate &; of the policy error will now be calculated by
Rf_H + 1:121,75&—1 + 1:122,75575 +p |:1:111,t+15t + 1:112,t+15t+1} =0 (48)

which is analogous to (30), and the value loss will be estimated by
1w N
Avb-consir — L > B'Quad (H,35,5;1) (49)
t=0

Again, R{,, is any estimate that satisfies F; Rf,; = R;y;. Our aim is to show that
the statistic A¥-co"t" provides an upper bound, up to an O (nCS) error term, to the
quadratic approximation A®PP" of the value loss, which is still given by (15). This is

accomplished by the following lemma (the proofs of all lemmas are given in Appendix A).

Lemma 3.

T q
Ao — NTPPT L AT LBy Y BN TG (a7, 0, 2) MR %) + O (n) (50)

t=0 =1

where

T
1 A o~ o~
Aester?“_c E —_ 5 EO Z ﬂtQ’U/ad (H’ 57 57 t)
t=0

Since H is negative definite by our assumptions on F and G, and G* (2}, u}, ) > 0

and 5\@ > 0, we obtain the following theorem, which is analogous to Theorem 1.

Theorem 2. If §; is defined by Equ. (48) and the boundary conditions (31), then
Aub_constr 2 A T 0 (nc'%)

The theorem provides the desired upper bound. However, to have tight bounds, it
is of interest to know whether the term Eg E?:o B G (x), ul, 2) Xiin (50) is big

compared to A%P" or to A®sterT-¢

. Intuitively, we would expect it to be small, since the
term is nonzero only in cases where the constraint is binding in the numerical solution,
but not in the exact solution (recall that z}, i, ); etc. are all functions of the history
of shocks z'), which should not happen very often if the numerical solution is good.
The following two lemmas make this precise. They show that the additional error term
that appears in the case of inequality constraints vanishes quickly when the numerical

solution becomes more accurate.

Lemma 4. Assume that the approximate policy function U (.) and the estimated La-
grange multipliers 5\’() are locally Lipschitz, in the sense that there exist constants A

and eqg > 0 such that for all x, z, i, and € < ¢

”(:c,z) - (J;l,zl)H <e =

’ Xi(z,2) — N(a', zl)H < Ae and HU(x, 2)—U (ml,zl)H < Ae (51)
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Then, under Assumption 1,

T q

EOZﬁtZGZ (xrvurazt) j‘i(‘%tvzt) = 0(7702) (52)

Lemma 5. In addition to (51), assume that there exist constants Py and e such that
for all i, t and € < €
Pr {S\i(it,zt) € (O,e]} < Pye (53)

where (a,b] denotes the half-open interval excluding a and including b. Then

T q

EO Z Bt Z GZ (r?7 u; Zl‘) 5‘35('%757 Zt) =0 (7703) (54)

The assumption in Lemma 5 basically says that, close to the region where the con-
straint ¢ is exactly binding, the probability density of \i is bounded. For a given numer-
ical solution, Equ. (53) is easy to check numerically, but it is more difficult to establish
general conditions that lead to (53). Appendix B therefore provides a more detailed
discussion of this assumption and shows that it actually holds under quite natural con-
ditions.

The conclusion of the above discussion is that the analysis of Section 4.2 and the
recursive computation of Section 4.3 go through in the case of occasionally binding

constraints. We only have to replace the terms F;; by ﬁij.l

5 Estimating the error in the policy function

The error in the policy function is more difficult to measure than the error in the value
function. In the procedure of the last section, we actually computed an estimate &
of the policy error, but there is no theorem showing that this estimate were unbiased
or an upper bound of the true policy error. In estimating the policy error we make a
mistake, which we denoted by &, and everything we know about it is Equ. (32). The
main obstacle to further analysis is that we cannot say anything about the correlation
between St-l—l and 441 etc. If we knew that they were uncorrelated, we could take
unconditional expectations in (32), replace EO[Fll,tgt+1] by Eg Fi1+Fo St+1 etc., and
obtain a homogeneous second order difference equation in Eg St. Since Eg 5_1 = Ky ST =
0, we could then infer Eg St = 0 for all . In the limiting case where the Hessian is
constant, this reasoning goes through. It also suggests that for smooth problems, where

the Hessian moves slowly over time, the estimate is almost unbiased. In the general

"Note that in the case of linear inequality constraints, the G;; vanish and F}; = f:fij. The Lagrange

multipliers are nevertheless needed to compute the Euler residuals, cf. Equ. (46).
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case, however, since the policy error is an arbitrary function of the state variables, it is
not clear whether this is approximately fulfilled or not.

In the general case, one can then follow three strategies:

1. If we only want to know the approximate size of the policy errors and do not
need rigorous error bounds, we can estimate it by the mean absolute value of the
estimated policy error. The numerical experiments with variants of the stochastic
growth model (cf. Section 6.1) suggest that it is a good estimate for well-behaved

problems.

2. If the value function is strongly concave, the upper bound on the value loss can
be used to obtain an upper bound on the expected squared policy error. This will

be treated in Section 5.1.

3. If one is willing to make a higher computational effort than that of Section 4.2 (but
still less than the one needed to obtain the solution of the optimization problem),
it is possible to compute the policy error at a certain point up to O (%2)- This

will be shown in Section 5.2.

5.1 Bounds on the average policy error

Having computed a bound on the value function loss, one can obtain bounds on the
policy errors if the value function is strongly concave in a sense to be specified below.

To obtain tight error bounds, the argument of this section exploits the idea that, in a
stationary solution, on average only the fraction (1 — ) of the value error is attributable
to the current policy error, the rest being due to future policy errors. The following
paragraphs will make this precise.

Denote by V (z, z) the true value function, and by W (z, z) the value that is obtained
by following the approximate policy function U (z,z). Then

V(z,z) = F(z,U* (2,2),2) + ﬂ/V (U* (z,2) +£(z"), 2") Q(z,dz") (55a)
Wie,2) = (a0 (02,248 [ W(0 @2 +66), ) Qds) (53

Assume that with the numerical policy function U (z,z) the probability distribution
over the state (2, z) converges weakly to the invariant measure fi(z, z). We can interpret
f(z, z) as the steady state distribution of (z,z), and the fact that fi(z, z) is invariant

under Q(z,dz') implies that

/f(m,z) ﬂ(dm,dz)://f(U(m,z)+§(zl),z1> Q(z,d2") p(dz, dz)  (56)
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for all measurable functions f. Subtracting (55b) from (55a), taking expectations, sub-
tracting and adding V (z, z) and applying (56) to V' and W, the expected value loss can

be written as

/V(ac,z) - Wiz, 2) p(dz,dz) = / {F(ac, U (z,z2),z) — F(z, U(w,z) yZ)
4 5{/ (V (U* (z,2) 4+ £(21), 21) -V (U (z,2) -I-f(zl),zl)> Q(z,dz")
+V(z,2) - W(x,z)}}ﬂ(dmadz) (57)

Using U (z,2) = U*(2,2) — 6(2, 2) and applying a second order approximation to (57)

gives
(1-8) [ (V(2,) = W(2.2)) flde, )
= / [5(m,z)'ﬁ’2(m,u*,z) - %5(m,z)’F22(m,u*,z)5(x, z)
+ﬂ/ (5(:6,2)"/1 (x*l,zl) — %5(:6, 2)'Viy (m*l, zl) 5z, z)) Q(z,dzl)} p(dz,dz)4+0 (7}03)

= —5/5(3772)']\/[(37,2)5(30,2) p(dz, dz)

— (z, Z),Z Gy(z,u", 2)Ni(z,2) + O (n.°)  (58)

=1
where we have used the abbreviations u* = U*(z,2), z*! = U*(z,2) + £(2!) and
M(z,2) = Fy(z,u*,z)+ B [ Vi1 (21, 2") Q(z,dz"), as well as the first order condition
Fy(z,u,2) + 3, Gy(z, u™, 2)Ni(z, 2) + 8 [ Vi (2*1,2') Q(z,dz") = 0. Observe that

5(x, 2)' G (x, u*, 2)Ni(2,2) <0 (59)

because either \;(z,2) = 0, or \(z,2) > 0 and G'(z,u*,2) = 0, and &(z, 2)/'G%(z, u*, 2)
must be nonpositive since otherwise U (z, z) = u* — (z, z) would violate constraint i.

Now take as given an upper bound A for E[V(z,z) — W(z, 2)] that we have ob-
tained by the method of Section 4. Assume we know that M (z,z) + aP is negative
definite for all (z, z) in the support of fi, for a given positive definite matrix P and some
a > 0. To obtain such an «, we can either use an estimate of [ Vi3 Q(z,dz") from the
estimated value function, or use the fact (Maldonado and Svaiter 2001, slight general-
ization of their Lemma 3.1) that Vy; + aP is negative definite if Fy; + aP is. Combining
(58) and (59) we get

E[6'Pd] < —é/é(x,z)’M(x,z)(S(z,z) p(dx, dz)

cH=p) [ 0,2 = Wa2) e, dz) + 0 (0) <

(8%
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Equ. (60) can be used to obtain variances and standard deviations of linear combinations

of the policy errors.

5.2 Unbiased estimates of the policy error

To compute an unbiased estimate of the policy error, we start from Equ. (20) (for
the sake of brevity, the following calculations only treat the case without inequality

constraints)
Rip1 + Far 401 4+ (Fagg + BB Fi1p41) 0 + BE: [Fi2,4410i41] = O (%2) (61)
Solving this for §; we obtain

& = — (Fzz,t + 5Et[F11,t+1])_1 (le,t5t—1 + Riy1 + BE; [Flz,t+15t+1]) + 0 (77c2) (62)

Adopting again the approximation d; = 0, we get

dr—y =ap_;+Ap_1617—2+ O (%2) (63)

where
ah_y = — (Foar—1 + BEr_1[Fiir)”" Ry (64a)
Ap_y == (Faaroa + BEra[Fo )™ Fara (64b)

This can be used as the starting point of the following recursion. Assume we are given
the relationship
Se1 = aiyy + Af 0,4+ 0 (77c2) (65)

where the vector aj,; and the matrix A7, are known. Then it follows from (62) that
8 = ai + A;6,1 + O (n.?) (66)
where af and A} are given by

a; = — (F22,t + B Ey [Fu,t+1 + F12,t+1A:;+1])_1 (Rt+1 + B Ey [F12,t+1flf+1]) (67a)
A = — (Fzz,t + B E; [Fll,t+1 + F12,t+1Af+1])_1 Foy 4 (67b)

Following this recursion we finally arrive at dy = a. Iterating Equs. (67) forwards, we
prove the following proposition, which expresses the policy error §; as an expectation of
future Euler residuals:

Theorem 3.
T-1

(50 = a?} + 0] (T]c2) - EO Z CsRs+1 + O (77c2) (68)

s=0
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where

Co = FrylyMo (69)
CH'] = 6CtMt+1 (70)
My = —Fizy (Faoy + BE: [Frip1 + F12,t+1A;<+1])_1 (71)

and the af and AY are given by (64) and (67).

From (67b) we see that M, satisfies the recursion
My = —Fias (Fage + BE: [Fi1e41 + ]\4t+1F21,7f+1])_1 (72)

If we can compute the matrices My, we can use (68) and Monte-Carlo techniques to
compute the policy error §y (or at least an unbiased estimate). The precision of the esti-
mate can be arbitrarily increased by increasing the number of Monte-Carlo simulations,
subject to an O (n.?)-error from (61).

Comparing the recursions (67) with (39), we see that the difference lies in taking
expectations as of time ¢. This is the reason why the estimate of &y obtained here is
unbiased, unlike its counterpart &y of Section 4.2. This comes at a computational cost,
however: while the recursions (39) can be computed along simulated paths, Equs. (67)
are functional equations that have to be computed for the whole state space. Since the
recursion (72) converges backwards in time, we can actually replace the M,’s in (68) by

the solution to the time-invariant equation

M(z,z) = —Fia(z, 2) (FQQ(JE, z)
+8 [ Bl €6, 2) 4 Ml + € e +66,2) Q. d) T (73)

where we write all the expressions as functions of the state (z, z). Equ. (73) is a nonlinear
functional equation similar to a Bellman equation, but is considerably simpler because
it does not involve any optimization. It can be obtained either recursively on a finite

grid, or by projection methods.

6 Numerical examples

This section reports numerical results on a well known test problem, the one-dimensional
stochastic neoclassical growth model. Numerical solutions to variants of this model have
been intensively studied in the literature. 1 have chosen a one-dimensional model, since
this can be solved at a finite grid with so high precision that it can serve as the “exact

solution” for test purposes (Santos and Vigo-Aguiar 1998, Section 4).
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6.1 One-dimensional stochastic growth
The social planner maximizes
c -1
E L 4
2 A (74)
t=0
subject to the constraints

Ct = GtAkf — kt+1
ke >0

where 6, is an i.i.d. shock with log-uniform distribution
-0 <logb; < o, o>0 (75)

We bring this model into the form of Section 3 and solve it on a one-dimensional grid

by defining?

z = log(0: Ak) (76a)
Uy = log(Akf‘_l_l) (76b)
Zt = log 0t (76C)
€)=z (76d)
T (Ut 1/all—y _
Py, up, z) = & (e 1/%)7 ] ! (76e)

The simulations use the parameter values 8 = 0.95, = 0.4, and ¢ = 0.2. I have chosen
an extremely high variance of the shock, since we have seen in Section 4 that it is the
uncertainty that raises problems in estimating the value and policy errors. A wide range
of values for 4 has been used, but always with v > 1, which is necessary to make the
function F’ concave in z and u (note that this restriction would not be necessary if we
had chosen the representation given in Footnote 2). The constant A was set to 1/(8a)
so that the deterministic steady state capital stock is equal to 1.

The theory developed above is based on quadratic approximations, and so it might
not be clear in practice whether the estimates are sufficiently accurate if there are strong
nonlinearities with large third derivatives of the relevant functions. Since the stochastic
growth model is known to be very well behaved, one might question the relevance of the
results for less well-behaved problems. To deal with this problem without investigating

more complicated models, I make the growth model as nonlinear as possible, first by

?Note that there are other ways to represent this model in our framework, the most straightforward
representation is x; = ky, uy = kg1, 20 = 0, £(2) = 0 and F(zy, uy, 2¢) = 2z Axy — uy. | have chosen (76)
since 1t reflects the fact that any combination of k; and ; with the same HtAk‘?) gives the same value

to the household.

24



using very high degrees of risk aversion (up to v = 10), and in one version also by
introducing a kink in the marginal utility function at a value ¢* close to the steady state
level of consumption. More precisely, for ¢ < ¢* the risk aversion parameter is some
~o, for ¢ > ¢* it is some 7y, and at ¢ = ¢* the utility function is scaled such that it is
continuous and differentiable. The second derivative suddenly jumps downward at c*.
Note that this violates the assumptions made in Section 3; | have chosen this extreme
specification in order to show that the assumptions on the smoothness of F’ will probably
not be critical in practice. The switch point ¢* was set at 1.02 times the deterministic
steady state level of consumption.

Finally, in one version I have introduced an inequality constraint of the form ¢; < ¢e®
(note that this translates into a linear constraint in (¢, #41)), where the constant ¢
was chosen so that, in the stationary distribution, the constraint is binding in about
65 percent of the periods. The constraint is similar to the familiar irreversibility of
investment, but is somewhat artificial in the present model; its only purpose is to study

the properties of the accuracy estimates in the case of inequality constraints.

6.2 Results

The “exact solution” was developed on a grid of 3137 points that conforms roughly to

capital values & € (0.2,5). I consider the following approximate solutions:
1. The solution obtained on discrete grids of 5, 25 and 97 points.

2. The linear approximation of u about the steady state. Since the state variable
is directly related to the log of the capital stock, this conforms to what is usually
called a log-linear approximation. (In Tables 1-4, this approximation is denoted

by “LinAppr”.)

3. The policy @(z) = u®**“(z)+¢. Two different values of the constant ¢ were chosen,
so as to make the size of the value function error close to that of the log-linear and

the 25-point-grid approximation, respectively (“ConstErr1” and “ConstErr2”).

4. The policy d(z) = u®*(z) + ¢(z — ") where 2°'*" is the steady state value
of z and ¢ was chosen to make the accuracy close to that of the 25-point-grid

(“LinErr”).

5. Same as the last approximation, but with an error only for values of 2 bigger than

0.952%". This creates a kink in the policy error (“Kink”).

6. The policy i(z) = u*“(z) + ¢z*'*! .sin(wz). Here w was chosen as 6007, making

the error oscillate 3 times in a range of 1 percent of the capital stock.

25



Two different values of ¢ were chosen, analogously to “ConstErr” (“SinErr1” and

“SinErr2”).

7. A policy error proportional to Fyq(z). This could induce a bias in the estimated
policy error (cf. the discussion at the beginning of Section 5). The size of the error

was chosen as for “LinErr” (denoted by “Bias”).

Items 1. and 2. of the list are approximations that arise from standard algorithms,
while items 3. to 7. are artificially constructed in order to study the properties of the
accuracy measure.

In the numerical calculations, the uniform distribution of # was replaced by an 11-
point distribution of equally likely points between —o and o. The results are based on
1000 Simulations of 200 periods each. The shocks were not generated randomly, but as a
sort of “subrandom” sequences, namely generalized Faure points.® This should increase
the precision of the estimates. The “true value loss” was computed as the difference
between the “exact value function” and the value obtained by an approximate solution,
computed on a grid of 3137 points.

Tables 1 and 2 present results for the benchmark case of ¥ = 5. 1 have chosen the
risk aversion parameter very big in the benchmark case, since for v close to unity most
of the approximate solutions are very accurate. The results in Tables 1 refer to average
errors over the range of 0.5 to 2 times the steady state value of capital. The value
loss A and its estimates are expressed in terms of proportional permanent changes in
consumption (for example, a value loss of 0.005 is equivalent to a permanent 0.5 percent
reduction in consumption).

The following conclusions emerge from the table. First, the estimates are very tight.
The upper bound is never more than twice the true loss in value, and in most cases over-
estimates by less than 20 percent. In two cases (Grid 5 and ConstErrl), the estimated
upper bound is slightly less than the “true loss”, even after accounting for the sampling
error in computing both values. In both cases, the solution is relatively imprecise, so
that the third order term in (35) is not yet negligible.

Second, the mean of the estimated policy error is close to the true error, so the
estimate of & is not strongly biased in these examples. However, since the estimated
error can be positive or negative, or close to zero by accident, it seems safer to look at
the estimated absolute policy error. This gives, in all cases, a good indication of the size

of the true policy error.

#Cf. Papageorgiou and Traub (1996). Thanks to Anargyros Papageorgiou and Joseph Traub for

providing the FinDer software to generate the Faure points.
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Third, estimating accuracy by means of Kuler residuals is not equivalent to our
method: policies with the same value loss can have very different maximum or average
Euler residuals, compare for example “ConstErr2” and “LinErr”.

Table 2 presents results for the same model, now not for averages over the state
space, but starting from a specific value of the capital stock, namely 0.98 times the
steady state. The same qualitative results hold. The “unbiased estimate” of Section 5
turns out to remove a significant part of the policy error bias in only two cases (LinErr,
Bias), but slightly increases it in most other cases. I take this as an indication that the
error from the quadratic approximation is more important than the bias resulting from
the correlation between St+1 and F3 ;44 etc. In any case, the estimated policy errors are
so close that they do not provide good test cases to differentiate between the different
error estimates.

Table 3 presents results for some other parameter values, including a version with
kinked utility function. Again, the results are averages over the state space. We see that
the qualitative results do not change when we vary the risk aversion parameter v. Even
in the case of the kink in the utility function, which violates the smoothness assumption
made in Section 3, the method provides a tight upper bound. This suggests that the
method is not very sensitive to the above smoothness assumptions.

Finally, Table 4 presents results for the model with the inequality constraint. The
results show a very regular convergence behavior if the number of grid points of the
approximate solution increases. While the statistic A% is actually below the true error
for 5 grid points, and substantially overestimates the true error for 25 grid points, we

obtain a tight upper bound for solutions on more grid points.

6.3 Computational cost

The computational cost of calculating the upper bound to the value function error is not
trivial, but it is substantially lower than the cost of calculating the numerical solution
itself, at least for medium or higher-dimensional problems. We only have to solve a
series of linear-quadratic problems along realized paths, and calculate Euler residuals.
The recursive computation of the quadratic approximations is cheap and grows only
cubically in the number of dimensions. More dimensions increase the computational
effort mainly in two ways: it becomes more difficult to compute the Euler residuals,
and we need more simulations to evaluate the expectation in (24). Both are problems
of multidimensional integration. Computing (24) when z is univariate is the type of
multidimensional integration that has been intensively studied in the literature on asset
pricing (see e.g. Papageorgiou and Traub, 1996), and it has been found that Quasi-

Monte-Carlo methods (for example generalized Faure points) performs best. To my
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knowledge, there are no results that would tell us by how much the numerical effort
goes up when z becomes multivariate. More numerical experiments have to be run to
study this question. However, with Monte-Carlo and Quasi-Monte-Carlo methods the
number of dimensions is usually not crucial.

Very likely, the main effect of dimensionality is on the computation of the Euler
residuals. With up to about 6 dimensions, the most efficient way to compute Euler
residuals is probably by quadrature. The computational burden will therefore depend
essentially on the distribution of the stochastic shocks and the availability of quadrature
grids. In an application with three dimensions or more, it may be very costly to compute
the Euler residual at all points of the simulations. This can be avoided in many practical
applications, since we can expect the integral term in the Euler residual to be a rather
smooth function of the state variables. It may therefore be possible to find a parametric
representation for it, in the spirit of the parameterized expectation algorithm of den
Haan and Marcet (1990). Practically we would then compute the conditional expectation
in the Euler residual at a certain number of points, and see whether it can be well
explained as a smooth function of the state variables. This approximation can then be
used in the simulations, which would drastically speed up the computations. Finally,
one should remember that the theory did not depend on calculating the Euler residuals
correctly: less precisely calculated residuals will simply result in a not so tight error
bound, cf. Section 4.2. The effort to produce these estimates therefore depends again
on the required precision on the upper bound.

The programming effort for any specific application is modest. The user only has
to simulate the model, compute the Euler residuals and compute the Hessian of I at a
given point of the state space. The latter task would be somewhat tedious to implement
by hand. However, with algebraic software like Maple or with automatic differentiation

software like ADIFOR, one can generate the required C- or Fortran code.

7 Conclusions: when to apply the method

The paper has derived estimates of the approximation error in the value as well as the
policy function of a numerical solution to a dynamic optimization problem to which the
exact solution is not known. Test applications have shown that both types of errors can
be estimated with good precision.

It remains to discuss more generally the situations where the application of this
method appears appropriate. Let me first point out that the method in its current form
cannot be applied to models of discrete choice and to dynamic games. This restriction

applies in fact to all evaluation methods based on Euler residuals. Apart from these
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restrictions, the model is applicable to a wide variety of models analyzed in macroeco-

nomics. To relate my method to other approaches, I briefly discuss four methods that I

see as the main alternatives.

1.

The statistic of Den Haan and Marcet (1994) is powerful in discriminating between
different solution methods, and it indicates the dimensions along which a solution
fails. It is also very easy to compute. However, it does not give an estimate of the

size of the value or policy function error.

Estimating the maximal Euler residuals. As explained in Section 2, Euler residuals
only give a one-period error, not an overall approximation error, since the effects
of Euler residuals can add up over time. An evaluation based on average or maxi-
mal Euler residuals is therefore satisfactory only when the residuals, after suitable
normalization, are trivially small, so that it is clear that the overall error is small

enough (as, e.g., in Gaspar and Judd, 1997).

Concerning the error bounds of Santos (2000), which are based on the maximal Euler
residuals, we already said that, by the nature of supremum arguments, they cannot
be very tight. If the numerical solution is so precise that the bounds are sufficiently
small for the purpose at hand, we can be confident about the solution; if not, it may

be necessary to apply the present method to obtain tighter estimates.

Finally, one can estimate an upper bound on the value loss by a Bellman step on the
estimated value function, compute the change AV, and use the well known formula
|V = vemeet|| < AV/(1 - ). Maldonado and Svaiter (2001) show how to obtain an

upper bound on the policy error from this information. They provide a result that

is robust to any errors arising from approximating the value function. This method
appears very natural if the model was solved by dynamic programming on a discrete
grid. It then requires basically no further computations. Like Santos’ method,
it provides extremum bounds that are probably much looser than the estimates
provided here. Since dynamic programming suffers from the curse of dimensionality,

the approach is limited to problems of moderate dimension.

One should note that it is possible to obtain an estimate of the value loss of an arbi-
trary numerical policy by computing the corresponding value function (this amounts
to solving a linear functional equation) and applying a single Bellman step. However,
apart from facing a curse-of-dimensionality problem, this step requires a discretiza-
tion of the state space and the estimate of the value loss does not involve the error

that arises from this discretization.
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I therefore see the main application of my method in stochastic models with a
medium- or high-dimensional state space, possibly with inequality constraints (an appli-
cation to a standard imperfect market heterogenous agent model is provided in Reiter,
2001). In these situations, the dimensionality forbids exact computations on finite grids,
and the inequality constraints induce kinks in the policy function and non-smooth value
functions which make the application of smooth approximation methods problematic.

These are also the models for which good error estimates are most urgently needed.

A Proofs of lemmas

Proof of Lemma 3. Premultiplying (48) by d; and taking expectations as of time ¢, we

can write
B |6 Rip1 + 5£g21,t<§t—1 + 541:122,1‘& + 5 <5£ﬁ11,t+15t + 5;H12,t+lgt+1>} =0 (77)

Using (46) and the definition & = &; — &;, multiplying (77) by 8¢, summing over all time
periods, and reordering as in (23), we get (recall that the function values F; etc. are

always taken at the simulated paths (&, @, ))

T
Bo Y B [8 i B 8 + 3 (510G + 81GH,0) A

t=0

+ Quad (f,8,8;) — Quad (1,8, 3; t)} =0 (1) (19
To analyze the term in S\t, consider the second order approximation
G' (2], uf,20) — G' (8¢, i, 21) = 06j_1 G 4 + 61GY 4 + %Quad (G*,8,6;t)+ 0 (n°) (79)
Multiplying (79) by A! gives
(614 GY  + 061G ) A = —%Xzﬁ@uad (G'6,8;1) + G' (a7, 4, 2) \i+ 0 (n°)  (80)
since G (2, fig, 2) X = 0 by Assumption 1 ii). Inserting (80) into (78) and using
Quad (I:[, 8,8;t) = Quad (F,8,8;¢) + >0, XiQuad (G,6,8;t), we get

T q
1 . .
Eo Y 5 [5;_] Fra+ 61 Fp + Quad (F, 8,551+ 5 > XiQuad (G, 8, 8;1)
t=0 i=1
q . A ~ ~
+ 3G (o705, 20 A - Quad (11,8,5:0)] = 0 (%) (81)

=1

Subtracting (81) from (15), we obtain

+0 (7703)
(82)

T q
1 A N ~ . .
AP — B g Ik [—iQuad (H,8,0;t)+ Quad (H,45,0;t) — E G' (25, uy, z1) Ay

t=0

1=1
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From the decomposition analogous to (26) we have

A~ o~

_%Quad (FI, 53 5) t)+Quad (f_Ia 53 ga t) = _% [Quad ([A{a ga Sa t) - Quad ( y 0503 t) (83)
Inserting (83) in (82), we obtain (50). O

In the following, we take explicitly into account that we are dealing with sequences of
numerical approximations, indexed by n, wheren = 1,2,.... We therefore write Z; ,,, iy ,,
Ot s 5\?“ and 7, for the state variable, control variable, policy error, estimated Lagrange
multiplier and supremum error of approximation n. In the assumptions of Lemmas 4
and 5, it should be understood that the constants A, Py and ¢y hold uniformly for all
n.

To proof Lemmas 4 and 5, we need
Lemma 6. Under Assumption 1, G* (], u}, z) 5& =0 (7]721) for all realizations of 2T .

Proof. N (&, 2) > 0 implies that G7 (&, @ n, 2) = 0 and G¥ (¢F, uf, ) = O (n))
because of (9). Similarly, G' (], u}, z;) > 0 implies that A\ (2}, z;) = 0 and i (B4, 2t) <
N, (14 A), for small enough 7,,, where A is the Lipschitz constant from Assumption 1ii.
Combining the two implications we get G' (2}, u}, 2) f\;;(:?;t,n, z) =0 (n2). O

To obtain a result stronger than O (77721), note that, for any nonnegative random

variable y, we have

Eo [x] = Fo[x|x > 0]- Pr{x > 0} (84)
where E[x|A] denotes expectation of y conditional on A. Note that
Eo {Gi (xF,uy, zt) X;(it,n, 2) | G* (2, uf, z) j\g(itm, zt) > 0} = O (n?) from Lemma 6.

Proof of Lemma j. From Lemma 6 and (84), it suffices to show that the probability
Pr {Gi (23, u}, z) N (&, 2) > O} goes to zero for 1, — 0.
From (9) we have ||G* (25, fitn, 2) — G* (7, uf, 2)|| < 7 - V for small enough 7.

Therefore
Pr {Gz (w?’ ,u;ﬂ7 Zt) >0& 5\; (it,nv Zt) > 0} S Pr {GZ (;L‘?, U?, Zt) >0& GZ (i‘t,n: at,n, Zt) = 0}
< Pr{G (af,u5,2) € (0,9 V]}

Define P, = Pr {Gi (x5, ur, z) € <klﬁ, ﬂ } Then

Pri{G (z},uj,z) € (0,11} =) P=P <1
=1

Then
00 k
fim, 2 fim 2, =0
1= 1=
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Define k, as the largest k such that 1/k > n, - V. Then, as 5, — 0, it follows that
k, — oo and therefore

Pri{G" («},u},2) € (0,7,-V]} < lim Z P =0 (85)

n—oo

Proof of Lemma 5. We know from the proof of Lemma 4 that
G (27,05, 20) N1, 20) > 0 = A} (B2, 20) € (0,ma(1+ A)]

From the assumption in Lemma 5 it then follows that Pr {Gi (zy,uy, ) j\i(it, z) > 0} =
O (n}) for all ¢. The claim then follows from Lemma 6 and (84). O

B Discussion of Lemma 5

In this section, | want to show that the assumption underlying Lemma 5 holds under
quite natural conditions.

Strictly speaking, one cannot provide more elementary conditions for (Equ. (53)) to
hold, since the estimated Lagrange multipliers A’ can be arbitrary functions, as long as
they satisfy Assumption 1. To understand the logic of the assumption, it is therefore

more instructive to look at the analogous condition for the exact multipliers:
Pr{X(z},z) € (0,¢]} < Pre (86)

It appears plausible that a reasonable estimate ' will satisfy (53) if (86) is fulfilled.

We will first reduce (86) to a similar condition on the policy functions. For this it
is necessary to introduce the concept of an unrestricted policy function. We know that
U* (z, z) solves the HJB equation

V(z,z) = max {F(m, u, z) + ﬂ/V (u+&(z", 2" Q(z,dzl)} (87)

w:G(z,u,z)>0
Now define U*, (z, z) as the solution to
F y Uy V ! s ! ,d ! } 88
uGJ(xl;Zlg))(Z()J;éz{ (:U v Z) +6/ (U+£(z ) z ) Q(Z z ) ( )

where the maximization is over the u that satisfy all restrictions except 7. This definition
conforms to the problem where in the present period, the constraint ¢ is ignored, while
in all the future periods the constraint is respected (so that the same value function is
used in (87) and in (88).

We can now establish the following lemma:
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Lemma 7. Assume:

i) The function F'(z,u,z) is strongly concave in u in the sense that there exists an

a > 0 such that F(z,u,z)+ au'u is concave in (z,u) for all z.

ii) There exist constants g > 0 and 7, s.t. for all u, i, t and e < €,
Pr{||U" (u+&(=21), 20) = UZ; (u+€(z1), 20) || € (0,€] [ 21-1 } < 7e

Then Equ. (86) holds.

Proof. Step 1: First we prove a relationship between the value of the Lagrange multiplier
and the distance of the optimal restricted policy from the unrestricted policy.

Define W(z,u,2) = F(z,u,2)+ 8 [V (u+&(21), 2') Q(z,dz"). Since V is concave,
Assumption i) of the lemma implies that W 4 au'u is concave.

Take any (z9,20) € Y, and set u* = U* (29, 20) and @& = UZX, (z0,20) . Define
0y = u* — @. Since @ solves (88), the directional derivative Wy (zo, @, 20)'d,, must be
equal to zero, because the control u at (zo, @, zg) is not restricted in the direction &,.
Towards u*, this follows from the fact that the set of feasible controls is convex. In the
opposite direction, it cannot be restricted because, again for convexity, «* would not
satisfy this restriction, which is impossible.

Now define the scalar function f(t) = Wy(zo, % — £y, 20)'8,. We have just shown
that f(0) = 0 and then we get

o 0 » i :
Wa(zo, u*, 20)8, = f(1) = / — dt = —/ W (20, % — 18y, 20) 8y, dt
0 0

> allé?

Now assume that the constraint ¢ is relaxed to Gi(m, u,29) > —e with € > 0. Then

the policy u* + 44, is feasible where

€ €

==——<
VIdull = [1dull - G2 (20, u*, 20) |

v

Then the change in the value function which is possible from the relaxation of the
constraint is at least W(zo, u* + 0y, 20) — W(zo, u*, z0) = yWa(zo, u*, 20)'6,, where the
equality is up to a first order approximation in e. If we define u*(€) as the optimal u
under the relaxed constraint, so that V (zg, 29) = W (2, u*(0), zp), we obtain

dW (29, u*(€), 20)

)\i(l‘o, Zo) = d(
o e=0

> yWo(zo, u*, 20) 8y > a||8u]| /V (89)

Step 2: From Step 1 we have that
Pr{X(zo0,20) € (0,€]} < Pr {|U* (0, 20) = UZ; (w0, 20)|| € (0,€V/a]}
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Since this is true for any (zg, 29), we can substitute u + £(z;) for z¢ and z for zy, and
then the assumptions of the lemma imply that the latter probability (conditional on z¢_q,
and therefore also the unconditional probability, by the law of iterated expectations) is

smaller than #Ve/a. This shows that (86) holds with constant P\ = #V/a. O

Assumption ii) of Lemma 7 is critical. Whether it holds or not depends mainly on
whether the unrestricted policy function and the slope of the constraint intersect with
a nonzero angle or not. Let us illustrate this with an example of one state variable z,
one control u and one constraint G'(z,u) > 0, where z; = u;_1 + &. Assume there
is exactly one z° such that G(z° UZ, (2°)) = 0. Assume further that %ﬂfzo) dif-
%, the slope of the constraint at z°, by at least ¢ > 0. Then
|[U*(z) — U*, (z)|| € (0,€] implies ||z — 2°|| < 2¢/¢ for small enough e. If & is
a continuous random variable with density function bounded by p, this implies that
Pri|lU=(u+&)— U (u+ &) || € (0,€]} < 4pe/o, verifying Assumption ii). In con-
trast, if dU;ilixo) = —gigz::g:g:;g, it is straightforward to construct examples where

Equ. (86) does not hold.

fers from —

The ideas of this example can be carried over to higher dimensions by requiring
that the graph of the unrestricted policy function and the constraint surface intersect
with different slopes, in a direction of the state space where the random shocks generate
enough variability. Since a precise and reasonably general formulation of these ideas is
rather tedious and requires a lot of notation, | leave it with the above example, which

should illustrate the relevant issues.
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