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Abstract

The paper presents a new method to solve DSGE models with a great number of
heterogeneous agents. Using tools from systems and control theory, it is shown how
to reduce the dimension of the state and the policy vector so that the reduced model
approximates the original model with high precision. The method is illustrated with
a stochastic growth model with incomplete markets similar to Krusell and Smith
(1998), and with a model of heterogeneous firms with state-dependent pricing. For
versions of those models that are nonlinear in individual variables, but linearized in
aggregate variables, approximations with 50 to 200 state variables deliver solutions
that are precise up to machine precision. The paper also shows how to reduce the
state vector even further, with a very small reduction in precision.
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1 Introduction

Stochastic general equilibrium models with incomplete markets and a large number (or
even a continuum) of heterogeneous agents are now widely used in economics. Except
for some special cases, only a numerical solution to these models can be computed. The
main computational challenge in solving these models is that, theoretically, the state vector
includes the whole cross-sectional distribution of individual state variables of the agents in
the economy, which is a high-dimensional or even infinite-dimensional object.

Krusell and Smith (1998) and Den Haan (1996) have shown, in some versions of the
stochastic growth model with heterogeneous agents and incomplete markets, that a very
good approximate solution can be obtained through approximate aggregation: agents are
supposed to base their decision not on the whole state vector of the economy, but only on
a very small set of aggregate statistics (such as moments of the cross-sectional distribution
of capital). This is a deviation from the assumption of strictly rational expectations, but
the available accuracy checks indicate that the resulting approximation is very good (a
recent comparison of several solution approaches is cf. Den Haan (2008)). Krusell and
Smith (2006) explain and extend this approximate aggregation result.

However, we cannot expect such a favorable result to go through in all relevant hetero-
geneous agent models. As an example, we will see below that even in the Krusell/Smith
model we need approximate solutions with more state variables if we want to study not
just technology shocks, but also tax shocks that directly affect the wealth distribution.
Reiter (2009b) has developed a method to handle those cases, using a high-dimensional,
non-parametric approximation to the cross-sectional distribution.1 The method allows for
a nonlinear relationship between individual decisions and individual states, so that it can
handle, for example, a consumption function with borrowing constraints. However, the
relationship between individual decisions and aggregate states is linearized, which allows
to compute a solution with many state variables, in the range of 1000-2000 on a normal
PC.

While Krusell and Smith (1998) and most of the subsequent literature use an extreme
form of aggregation (only one state variable) to obtain a reasonably precise solution,2

Reiter (2009b) goes the opposite way and avoids aggregation by using a high-dimensional
state vector. The latter approach has two important limitations. First, a state space of
around 1000 state variables appears sufficient to give a precise discrete approximation of
a univariate cross-sectional distribution, which is the case of one individual state variable.
However, the constraint on the number of states becomes restrictive if each individual has
two or more state variables. Second, linearization in aggregate variables is sufficient for

1Midrigan (2009) shows in a model of state dependent pricing that higher-order moments matter for
aggregate dynamics. He solves the model using only one state variable, because those higher-order moments
do not vary much. Nevertheless, the precision of the forecasting rule is considerably smaller than in the
Krusell/Smith model. To avoid those problems, Costain and Nákov (2008) apply the method of Reiter
(2009b) to a similar model.

2Recent innovative approaches such as Preston and Roca (2007) and Den Haan and Rendahl (2009)
can handle a somewhat larger number of variables in the state vector.
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many interesting applications, but it is inadequate for others, for example models with asset
choice. The question then is whether it is possible to construct aggregate models which
give a similarly precise solution, but use a much lower number of state variables, so that
higher-order approximations in the aggregate variables can be obtained. Furthermore, for
a precise analysis of the properties of the model it is very useful to have a lower-dimensional
representation of the solution.

In the present paper I address those issues, by taking a closer look at the aggregation
problem in typical dynamic macroeconomic heterogeneous agent models. It turns out
that these models do not allow exact aggregation in the theoretical sense, but a substantial
reduction in the number of state variables is possible in a way that the approximate solution
is still precise basically up to machine precision. Building on results from the systems and
control literature on model reduction, I provide a general algorithm to construct such an
aggregate model and choose the appropriate state space. The algorithm is independent
of the underlying structure of the original state space (whether we have a univariate or
a bivariate distribution, etc.). Moreover, the algorithm does not depend on whether the
cross-sectional distribution is smooth, unlike methods that use smooth parameterizations
of the distribution (for example Den Haan (1996)). The distribution of the model in
Appendix A, for example, is quite irregular.

To give an idea of the magnitudes involved, we are going to study models with between
700 and more than 30000 state variables, while the reduced models have in the range of
50 and 200 state variables and are extremely accurate. Giving up some precision, the
same method can be used to select an even lower number of state variables. Such an
approximation can serve as the basis for higher-order solutions, an issue that is explored in
Reiter (2009a). Numerical results are provided for several models. The main application is
a stochastic growth model similar to Krusell and Smith (1998), but allowing for persistent
individual productivity shocks.3 A second application is a standard OLG model with
many cohorts. This gives an interesting comparison, because aggregation turns out to
be much harder in OLG models. A third application, provided in the appendix, is a
model of state-dependent pricing (SDP) with firm-specific productivity shocks. Beyond
the examples provided here, the same method has been applied successfully in Reiter,
Sveen, and Weinke (2009) and Haefke and Reiter (2009).

It should be stressed that the goal of the proposed method is to compute the best pos-
sible approximation to the rational-expectations equilibrium with full information. While
the Krusell/Smith approximation has the flavor of a “bounded-rationality” solution of the
model, the outcome of the method presented here cannot be interpreted in this way.

The plan of the paper is as follows. Section 2 describes the heterogeneous-agents
stochastic growth model that will be the main example to test the algorithm. Subsection 2.6
gives the OLG version of the model. Section 3 presents the theory of aggregation and the
numerical algorithms. Section 4 provides numerical results for the examples economies.
Section 5 concludes. Appendix A describes a model of heterogeneous firms with state-

3The Matlab programs to solve this model are available at http://elaine.ihs.ac.at/~mreiter/

appraggr.tar.gz.
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dependent pricing as another test case. Appendices B and C present technical details.

2 Example 1: The Stochastic Growth Model With

Heterogeneous Agents and Incomplete Markets

The first example is a variation on the well-known model of Krusell and Smith (1998). The
model of this section is very similar to Reiter (2009b); the main difference is that here we
allow for permanent changes in household productivity. Furthermore, the discretization
procedure (Section 2.4) is simpler than in Reiter (2009b).

There is a continuum of infinitely lived households of unit mass. Households are ex ante
identical, and differ ex post through the realization of their individual labor productivity.
They supply their labor inelastically. Production takes place in competitive firms with
constant-returns-to-scale technology. A government is introduced into this model to the
sole purpose of creating some random redistribution of wealth. This helps to identify the
effect of the wealth distribution on the dynamics of aggregate capital.

2.1 Production

Output is produced by perfectly competitive firms, using the Cobb-Douglas gross produc-
tion function

Yt = Y(Kt−1, Lt, Zt) = AZtK
α
t−1L

1−α
t , 0 < α < 1 (1)

where A is a constant. Production at the beginning of period t uses Kt−1, the aggregate
capital stock determined at the end of period t− 1. Since labor supply is exogenous, and
individual productivity shocks cancel due to the law of large numbers, aggregate labor
input is constant and normalized to Lt = 1, cf. Section 2.3. Aggregate capital is obtained
from summing over all households, cf. (19).

The aggregate resource constraint of the economy is

Kt = (1 − δ)Kt−1 + Yt − Ct (2)

where δ is the depreciation rate and Ct is aggregate consumption. The aggregate produc-
tivity parameter Zt follows the AR(1) process

logZt+1 = ρZ logZt + εZ,t+1 (3)

where εZ is an i.i.d. shock with expectation 0 and standard deviation σz. The before tax
gross interest rate R̄t and wage rate W̄t are determined competitively:

R̄t = 1 + YK(Kt−1, Lt, Zt) − δ (4)

W̄t = YL(Kt−1, Lt, Zt) (5)
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2.2 The Government

The only purpose of the government is to create some random redistribution between
capital and labor. In period t, the government taxes the capital stock accumulated at the
end of period t− 1 at rate τk

t , and labor at rate τ l
t , so that after tax gross interest rate Rt

and wage Wt are related to before tax prices by

Rt = R̄t − τk
t (6)

Wt = W̄t(1 − τ l
t ) (7)

The tax rate on capital follows an AR(1) process around its steady state value τk∗:

τk
t+1 − τk∗ = ρτ (τ

k
t − τk∗) + ετ,t+1 (8)

where ετ is an i.i.d. shock with expectation 0 and standard deviation στ . The labor tax is
determined by a balanced-budget requirement

τk
t Kt−1 + τ l

tW̄tLt = 0 (9)

2.3 The Household

There is a continuum of households, indexed by h. Each household supplies inelastically one
unit of labor. Households differ ex post by their labor productivity ξt,h. Labor productivity
of household h is the product of a permanent component θt,h, and an i.i.d. component ξt,h.
Both are normalized to have unit mean:

E θt,h = 1 (10a)

E ξt,h = Et−1 ξt,h = 1 (10b)

Net labor earnings are therefore given by

yt,h = Wt(1 − τ l
t )θt,hξt,h (11)

Household h enters period t with asset holdings kt−1,h left at the end of the last period. It
receives the after tax gross interest rate Rt on its assets, such that the available resources
after income of period t (“cash on hand”) are given by

xt,h = Rtkt−1,h + yt,h (12)

(13)

Cash on hand is split between consumption and asset holdings:

kt,h = xt,h − ct,h (14)

We impose the borrowing constraint

kt,h ≥ k = 0 (15)
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The consumption decision of the household depends on aggregate variables, which are
reflected in a time subscript and will be specified in detail later, and the individual state
variables x and θ. The solution of the household problem is then given by a consumption
function Ct(x, θ). The first order condition of the household problem is the Euler equation

U ′ (Ct(xt, θt)) ≥ β Et [Rt+1U
′ (Ct+1(Rt+1 (xt − Ct(xt, θt)) + yt+1, θt+1))]

and Ct(xt, θt) = xt − k (16a)

or

U ′ (Ct(xt, θt)) = β Et [Rt+1U
′ (Ct+1(Rt+1 (xt − Ct(xt, θt)) + yt+1, θt+1))]

and Ct(xt, θt) < xt − k (16b)

The expectation in (16) is over the distribution of θt+1, ξt+1 and the future aggregate state.
Since the household problem is concave, Equ. (16) together with the constraint (15) and
a transversality condition (which is guaranteed to hold in a bounded approximation) are
both necessary and sufficient for a solution of the household problem.

2.4 Finite Approximation of the Model Equations

2.4.1 Household Productivity, Consumption Function and the Euler Equation

Permanent productivity θt,h follows an nP -state Markov chain and takes on the values
θ̄1, . . . , θ̄nP

. Transitory productivity ξt,h has a discrete distribution, taking on the values ξ̄l
with probabilities ωξ

l for l = 1, . . . , ny.
4

At each point in time, and for any value of productivity θ̄j , the savings behavior is
characterized by a critical level χjt where the borrowing constraint starts binding, and
a smooth function for x > χjt. I approximate the consumption function by a piecewise
linear interpolation between the knot points x̄j,i,t. Knots are chosen as x̄j,i,t = χjt + x̄i,

i = 0, 1, . . . , ns with 0 = x̄0 < x̄1 < . . . < x̄ns
. The consumption function Ĉj(x;St) can

then be represented by (ns + 1)nP numbers, giving for each j the critical level χjt and
the level of consumption at x̄j,1,t, x̄j,2,t, . . . , x̄j,ns,t. Notice that consumption at x̄j,0,t equals
x̄j,0,t by construction. These numbers are collected into the vector St. The approximated

consumption function is then written as Ĉj(x;St). Again, the time subscript reflects the
dependence on aggregate state variables.

For each θ̄j , the approximation of the saving function has ns + 1 degrees of freedom.
We therefore apply a collocation method and require the Euler equation (16) to hold with

4In Reiter (2009b), productivity is assumed to have a continuous distribution. This leads to more
complex transition processes and requires a more sophisticated discretization procedure. All this just
distracts from the focus of the present paper, so I use a simpler setup.
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equality at the knot points x̄j,i,t:

U ′
(

Ĉj(x̄j,i,t−1;St−1)
)

= β

nP
∑

j′=1

ny
∑

l=1

ωθ
j,j′ω

ξ
l

[

(R̄t − τk
t )U ′

(

Ĉj′(x̄
ijlj′;St)

)]

+ ηc
ijt,

j = 1, . . . , nP , i = 0, . . . , ns (17a)

where
x̄ijlj′ ≡ (R̄t − τk

t )
(

x̄j,i,t−1 − Ĉj(x̄j,i,t−1;St−1)
)

+ (W̄t(1 − τ l
t ))θ̄j′ ξ̄l (17b)

Equ. (17a) uses the notation of Sims (2001): the ηc
ijt are the expectation errors that

result from the aggregate shocks (idiosyncratic shocks are handled by summing over the
quadrature points). They are determined endogenously in the solution of the system.

2.4.2 Wealth Distribution

In the model with a continuum of agents, the ergodic cross-sectional distribution of wealth
has an infinite number of discrete mass points, because the distribution of idiosyncratic
productivity is discrete, so that households at the borrowing constraint k = 0 return to
the region of positive k in packages of positive mass. I approximate this complicated dis-
tribution by a finite number of mass points at a predefined grid k = k̄1, k̄2, . . . , k̄nk

= kmax.
The maximum level kmax must be chosen such that in equilibrium very few households are
close to it.

The key element of the approximation is the following. If the mass φ of households
in period t saves the amount k̃ with k̄i ≤ k̃ ≤ k̄i+1, I approximate this by assuming that
φ·ψ(i, k̃) households end up at grid point k̄i, while φ·ψ(i+1, k̃) = φ·(1−ψ(i, k̃)) households
end up at grid point k̄i+1. This random perturbation of capital is done such that aggregate
capital is not affected, so we require that ψ(i, k̃)k̄i + ψ(i+ 1, k̃)k̄i+1 = k̃. This is achieved
by defining

ψ(i, k) ≡











1 − k−k̄i

k̄i+1−k̄i
if k̄i ≤ k ≤ k̄i+1

k−k̄i−1

k̄i−k̄i−1
if k̄i−1 ≤ k ≤ k̄i

0 otherwise

(18)

The function ψ(i, k) gives the fraction of households with savings k which end up at grid
point k̄i. For any k, ψ(i, k) is non-negative and ψ(i, k) > 0 for at most two values of i.

Define φt(j, i) as the fraction of households at time t that have productivity level θ̄j

and capital level k̄i. Then we can write aggregate capital as

Kt =

nP
∑

j=1

nk
∑

i=1

k̄iφt(j, i) (19)

Further define φt(j) as the column vector (φt(j, 1), . . . , φt(j, nk))
′, and stack all the φt(j)’s
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into the column vector

Φt ≡







φt(1)
...

φt(nP )






(20)

which describes the cross-sectional distribution of capital at time t. We can now describe
the dynamics of the capital distribution for a given savings function. For a level of perma-
nent productivity θ̄j , the transition from the distribution φ̃t(j) at the beginning of period
t (after the shock to productivity has realized) to the end-of-period distribution φt(j) is
given by

φt(j) = ΠK
t,jφ̃t(j) (21)

where the elements of the transition matrix ΠK
t,j are given by

ΠK
t,j(i

′, i) =

ny
∑

l=1

ψ(i′, Rtk̄i +Wtθt,lξt,l − Ĉj(Rtk̄i +Wtθt,lξt,l;St−1)) (22)

From the properties of ψ(i, k), each column of ΠK
t,l has at most 2ny non-zero elements. We

can now write the transition from the end-of-period distribution Φt−1 to Φt as the linear
dynamic equation

Φt = ΠtΦt−1 (23a)

where

Πt =















ΠK
t,1 0 . . . 0 0
0 ΠK

t,2 . . . 0 0
. . .

0 0 . . . ΠK
t,nP−1 0

0 0 . . . 0 ΠK
t,nP















(

ΠP ⊗ Ink

)

(23b)

and ΠP is the Markov transition matrix between the permanent productivity states θ̄j .

2.4.3 The Discrete Model

In the discrete model, aggregate capital K is given by (19). Aggregate consumption can
be written in the same way. Because of inelastic labor supply and the assumptions (10)
about labor productivity, the law of large numbers5 implies that aggregate effective labor
is given by Lt = 1.

With the approximations of Sections 2.4.2 and 2.4.1 the model is reduced to a finite
set of equations in each period t. To write it with the minimum number of variables, we
can say that the discrete model consists of the equations (3), (8), (17) and (23). These
equations define, for each period t, a system of nP (ns + nk + 1) + 2 equations in just as
many variables: St, Φt, Zt and τk

t , understanding that the variables τ l
t , R̄t, W̄t and K are

defined through (4), (5), (9) and (19).

5A law of large numbers for economies with a continuum of agents, using standard analysis and measure
theory, is given in Podczeck (2009).
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Notice that nP of those variables are redundant, since
∑

i φt(l, i) = 1 for all l. Corre-
spondingly, nP equations in (23) are linearly dependent since all rows in the ΠK

t,j add up
to one.

2.5 Parameter Values and Functional Forms

I will show numerical results for two different calibrations of the model. In the small
calibration, variations in individual productivity are i.i.d., which means that nP = 1.
Using nk = 1000 grid points for the distribution of capital and a spline of order ns = 100
for the consumption function, the discrete model has around 1100 variables and can be
solved exactly. This has the advantage that we can measure the accuracy of the aggregate
models by comparison to the exact solution of the model. The big calibration allows for
persistent variations in individual productivity, using nP = 31.

Common to both calibrations are the following parameter values. The frequency of
the model is quarterly. Standard values are used for most of the the model parameters:
β = 0.99, α = 1/3, δ = 0.025. For the utility function I use CRRA

U(c) =
c1−γ − 1

1 − γ
(24)

with risk aversion parameter γ = 1 (the accompanying Matlab programs can be used to
explore other degrees of risk aversion). For the technology shock I choose ρZ = 0.95 and
σz = 0.007, which again are standard values. I choose the tax shock as uncorrelated,
ρτ = 0, to create unpredictable short-run redistributions. Taxes fluctuate around zero, so
τk∗ = 0. The variability of the tax shock is set, rather arbitrarily, to στ = 0.01. In some
robustness checks, both the model frequency and στ are varied.

2.5.1 The calibration with i.i.d. shocks

Transitory productivity ξt,i is modeled having only two realizations of equal probability.
In the small calibration, the two realizations were chosen such that V ar(ξt,i) = 0.061/4,
corresponding to the size of the transitory shock in the RIP income specification of Guvenen
(2009).

2.5.2 The calibration with persistent shocks

The second calibration allows for persistent variations in individual productivity, using
nP = 31. From an economic point of view, this calibration is interesting because it leads
to a rather realistic distribution of income, consumption and wealth (cf. Table 2.5.2).

This calibration matches three targets. The earnings share of the upper quintile of the
distribution is 0.6139. The earnings share of the top 1 percent of the distribution is 0.1476.
The conditional annualized variance of persistent income equals 0.15. I assume that from
each grid point θ̄j , the household can only switch to neighboring points θ̄j−1,θ̄j+1. The
probability with which this happens helps to meet the third target. The probability of
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The Distributions of Earnings
Gini Quintiles Top Groups (%)

1st 2nd 3rd 4th 5th 90–95 95–99 99–100
U.S. 0.63 -0.40 3.19 12.49 23.33 61.39 12.38 16.37 14.76
Model 0.61 1.73 3.46 9.79 23.64 61.39 13.17 15.43 14.76
The Distributions of Wealth (%)

Gini Quintiles Top Groups (%)

1st 2nd 3rd 4th 5th 90–95 95–99 99–100
U.S. 0.78 -0.39 1.74 5.72 13.43 79.49 12.62 23.95 29.55
Model 0.74 1.16 2.92 5.25 10.50 80.18 20.26 30.22 13.41
Source for US: Castaneda, Diaz-Gimenez, and Rios-Rull (2003);
Model calibration of Section 2.5.2.

Table 1: Earnings and wealth distribution in the growth model

reaching the highest state is adjusted so as to meet the second target. To match the first
target, the income value of the uppermost 20 percent of grid points is modified upwards
from a distribution that is equidistant in logs. To avoid that the distribution drifts too
much to the boundaries of the state space, the household faces a constant probability of
“dying”, that means, being reset to the median value of θ. The inverse of this probability
is 50 times the model frequency. Transitory productivity ξt,i has again two realizations,
namely 0.2 and 1.8. This unrealistically high variance of the transitory component helps
explaining the lower quintiles of the distribution.

The exact specification of the income process can be seen from the program “caliinc.m”.

2.6 Example 2: An OLG Economy

As a second example, we consider an economy where households have a finite life span,
but there is no heterogeneity within cohorts. A household born in period t lives from t to
t+T −1. Consumption and labor supply of a household with age i in period t are denoted
by ct,i and lt,i, respectively. The household supplies one unit of labor in each period before
retirement age TR, therefore lt,i = 1 for i = 0, . . . , TR−1 and lt,i = 0 for i = TR, . . . , T −1.
Labor productivity is normalized to 1/TR, so that total effective labor supply equals 1.

The household born at t maximizes

Et

T−1
∑

i=0

βiu(ct+i,i) (25)

Asset holdings follow

kt,i = Rtkt−1,i−1 +
Wt

TR
lt,i − ct,i (26)

The household starts with no assets, and cannot leave debt at the time of dying. The
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budget constraint of a household born at t is therefore

kt,−1 = 0 (27)

kt+T−1,T−1 ≥ 0 (28)

Again, there is only one asset (physical capital). The household can save and lend freely
in this asset. There is no borrowing or short-sale constraint.

Technological and utility parameters are chosen as in the infinite-life model. To have
a model with a similar dimension as before, I choose a monthly frequency and assume 60
years of economic lifetime, so T = 720 and TR = 480. For the OLG model, I only consider
technology shocks, specified as in (3). There are no tax shocks (τk

t = τ l
t = 0).

3 Exact and Approximate Aggregation in Linear Mod-

els

3.1 Overview of the Solution Method

The method I propose in this paper to compute a numerical solution of heterogeneous
agent models (such as the one we have seen in Section 2) involves the following steps:

1. Discretizing the model, as explained in Section 2.4. This usually involves:

• In a model with a continuum of household, a finite representation of the contin-
uous cross-sectional distribution function of the individual state variables such
as household assets, cf. Section 2.4.2.

• A finite parameterization of the continuous decision functions, for example by
spline functions of polynomials.

2. Computing the deterministic steady state of the discrete model. This usually involves:

• In an outer loop, iteration over steady state prices.

• In an inner loop, computing the optimal decisions of agents conditional on prices,
and then finding the ergodic cross-sectional distribution of the individual state
variables.

3. Linearizing the model equations around the steady state. This is done by numeric
differentiation, either automatic differentiation or some form of finite differences.

4. If the total number of variables in the linearized discrete model is not too big (1000-
2000 on a normal PC), one can compute the solution of the linearized model by any
package for linear rational equation systems, for example Sims (2001).

5. If the total number of variables is too big, or if a lower-dimensional approximation
is desired, aggregate the model by state and policy reduction, and solve the reduced
model. We can distinguish two approaches:
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(a) Identify the minimal state vector that still allows the model to be solved with
very high precision, in the range that the floating-point precision of the computer
allows. This will be explained in Section 3.4.

(b) Sacrificing some accuracy, reduce the dimension even further to obtain a small
model with reasonable accuracy (in the spirit of Krusell and Smith (1998), Den
Haan (2007) and the subsequent literature in macroeconomics). The task then
is to find the right set of state variables, in order to obtain (close to) maximal
accuracy for a given size of the aggregate model. This will be explained in
Section 3.5.

Steps 1–4 have already been described in Reiter (2009b). The topic of the present paper
is aggregation (Step 5). As was explained in the introduction, this allows to accurately
handle models with a much higher number of variables, and serves as an important input
for higher-order solutions.

The linearization in Step 3 gives a solution that is linear in aggregate variables but
nonlinear in individual variables. To see what this means, take the growth model as an
example. The consumption function, which gives consumption as a nonlinear function of
individual assets, is model led as depending linearly on the aggregate state vector, the
cross-sectional distribution of capital. If the consumption function is represented by 100
spline coefficients, and the distribution by 1000 histogram values, this linear dependence
is described by a 100 × 1000-matrix.

I would like to stress that in this paper I do not ask whether the discrete model with a
high- but finite-dimensional state vector (obtained in Step 1) is a good approximation to
the theoretical model with a continuum of agents. This is an important question, which I
leave for future work. I rather focus on the question whether the high-dimensional discrete
model can be approximated well by a lower-dimensional model. In the following, I will
therefore consider the solution to the discrete model as the “exact solution”.

3.2 The Reduced State Space Model

In this section we review some results of the control literature on state aggregation in linear
state space models. From Section 3.3 onwards, we will see how to adapt those techniques
to the models that are of interest to economists, namely DSGE models.

In the literature on system and control theory, aggregation is called “model reduction”.
We deal with the linear dynamic system

xt = Axt−1 +Bεt (29a)

yt = Cxt (29b)

where A, B and C are given matrices. The vector x contains the state variables, ε is the
vector of exogenous shocks (“inputs”), which satisfy Et−1 εt = 0 and E[εtε

′
t] = Σε. The

vector y is the “output” of the system, the variables that we are ultimately interested in,
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and which we observe. The goal then is to approximate (29) by a lower-dimensional model:

x̂t = Âx̂t−1 + B̂εt (30a)

ŷt = Ĉx̂t (30b)

(29) and (30) are driven by the same shock vector εt, and should generate the same output
variables. Therefore, y and ŷ have the same dimension. The idea is to choose the matrices
Â, B̂ and Ĉ so that (30) is a good approximation to (29) in the sense that the response
of ŷ to past ε in the reduced model is similar to the response of y to past ε in the original
model. State aggregation means that the size of the state vector x̂, dim(x̂), is considerable
smaller than the size of x, dim(x).

A natural way to derive the reduced model (30) is by assuming that the reduced state
x̂ is linearly related to the original state x by

x̂t = Hxt (31)

with appropriately chosen matrix H . We can assume, w.l.o.g., that H is orthogonal:

HH ′ = I (32)

Notice that H has more columns than rows, so that H ′H is not the identity matrix.
Given H , it is natural to choose Â, B̂ and Ĉ by least squares. OLS estimates of (30)

in the model (29) are given by (cf. Appendix B.1)

Â = HAΣxH
′ (HΣxH

′)
−1

(33a)

B̂ = HB (33b)

Ĉ = CΣxH
′ (HΣxH

′)
−1

(33c)

where Σx denotes the unconditional covariance matrix of x. It is given by L (A,B,Σε),
which is defined as the unique symmetric solution to the discrete Lyapunov equation

L (A,B,Σε) = AL (A,B,Σε)A
′ +BΣεB

′ (34)

for any matrices A, B and Σε of appropriate size such that Σε is non-negative definite
and A is asymptotically stable, which means that all eigenvalues are smaller than unity in
absolute value. For the special case of Σε = I, we will also use the short notation L (A,B).

Appendix B.2 shows that, if A is asymptotically stable, then is Â. The practical compu-
tation of Σx, even in cases where the vector x is very large, is dealt with in Appendix B.3.
When computing the OLS estimates (33), one has to deal with the fact that the matrix
HΣxH

′ may be ill-conditioned if H has many rows. This can be handled by Tikhonov-
regularization,6 cf. Appendix B.4

What remains to be done is to find a suitable way of choosing H . The standard
approximation method in control theory is called “balanced reduction”. I will explain it as
the combination of two ideas: principal component analysis (PCA), and the “conditional
expectations approach” (CEA). The latter idea will be of independent interest for us when
we consider aggregation in DSGE models.

6I am grateful to Ken Judd for pointing this out to me.
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3.2.1 Principal Component Analysis (PCA)

The idea of PCA is to find out in which direction the state vector x varies most strongly.
For that, we consider the eigenvalue decomposition of the unconditional covariance matrix
of x, Σx:

Σx = USU ′ (35)

Here, S is a diagonal matrix with the eigenvalues σ1, . . . , σn, ordered such that σi ≥ σi+1.
U is the corresponding matrix of eigenvectors of Σx. (35) decomposes the variance of x into
orthogonal components of decreasing importance (principal components). If the sequence
σi ≥ σi+1 decays rapidly enough, one can ignore the components i > k for a suitably
chosen k < dim(x). In particular, if σi is too small compared to σ1, it is numerically
indistinguishable from zero. In that case, one can say that the state x lives, up to a very
good approximation, in the space spanned by the first k columns of U , which we denote
by U:,1:k. Then we choose the reduced state x̂ as the coefficients of x with respect to this
basis: xt = U:,1:kx̂t. Since the columns of U are orthogonal, we can set H = U ′

:,1:k and get
Hxt = U ′

:,1:kU:,1:kx̂t = x̂t, as in (31).
Having chosen H in this way, it can be easily shown that the OLS estimates (33a)

reduce to Â = HAH ′ and Ĉ = CH ′.

3.2.2 Conditional Expectations Approach (CEA)

If we are only interested in the variables in y, why is it important to know the full state
vector xt? Because xt helps to predict future values yt+i.We therefore want the reduced
model (30) to give us the correct conditional expectations7 of future y’s. Then it is natural
to include those conditional expectations in the reduced state vector x̂. Since

Et[yt+i] = Et[Cxt+i],= CAixt i = 1, 2, . . . (36)

this means to set x̂t,i = (CAi)xt for i = 0, . . . , N − 1 for some sufficiently large N . Then
the reduced model makes the best possible predictions for yt+i up to N − 1 periods ahead.
Moreover x̂t,i predicts not just yt+i but also x̂t+i−l,l for l < i:

x̂t,i = Et[x̂t+1,i−1] = . . . = Et[x̂t+i−1,1] = Et[x̂t+i,0] = Et[Cxt+i], i < N (37)

We might therefore set H equal to

Q(N) ≡













C
CA
CA2

· · ·
CAN−1













(38)

7Notice that in the context of linearized solutions, we do not worry about predictions of higher moments
of yt+i, because the solution is of the certainty-equivalence type in aggregate variables.
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But then there is an obvious problem: to have high precision, we need predictions for many
periods ahead, and so it seems we need a large vector x̂, which contradicts the idea of state
aggregation. To get state aggregation, we have to pick k < n ≡ dim(x) rows (or linear
combinations of rows) from Q(N). Mathematical theory suggests8 to do this via a singular
value decomposition (SVD) of Q(N):

Q(N) = USV ′ (40)

where U ′U = I, V ′V = I, and S is again a diagonal matrix with entries σ1, . . . , σn, ordered
such that σi ≥ σi+1. In analogy to the procedure of PCA, we set H equal to the first k
rows of V ′:

H = V ′
1:k,: (41)

We can see a strong formal analogy between CEA and PCA if we consider the limiting
case N → ∞:

Q ≡

∞
∑

i=0

(

∂ Et yt+i

∂xt

)′(
∂ Et yt+i

∂xt

)

=

∞
∑

i=0

Ai′C ′CAi = lim
N→∞

Q(N)′Q(N) = L (A′, C ′) (42)

The matrix Q is called “observability Gramian”, and measures the sum of squares of the
contribution of x to the future y’s.

If it is more important to predict the y in the not-too-distant future, then it is better
to get H from the SVD of Q(N) for large N (below I will choose N = 1000, capturing
forecasts of the next 250 years) rather then the SVD of Q.

3.2.3 Balanced Reduction

PCA and CEA implement two different ideas on how to reduce the state vector. PCA asks:
“what are the components of x that vary a lot over time”? If a component does not vary,
there is no need to include it in the state vector. CEA asks: what are the components of x
that help predicting the variables that really matter, namely the future y? If a component
of x varies a lot, but this variation is unrelated to changes in y, it is useless to include it
in the state vector. The concept of “Balanced Reduction” combines the two approaches.
Define the matrices R, Σx, Q, Q, U , S, V , H̃ as follows:

RR′ = Σx ≡ L (A,B,Σε) (43)

QQ′ = Q ≡ L (A′, C ′) (44)

USV ′ = R′Q (45)

H̃ = S−1/2V ′Q′ (46)

8Given any matrix X with rank n, the rank-k matrix that is closest to X , both in the L2 and in the
Frobenius norm, is given by

X̃ = USkV (39)

where USV is the SVD of X , and Sk is obtained from S by zeroing all the singular values σi with i > k

(Trefethen and Bau III 1997, Theorems 5.8,5.9).
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Here, R is the Cholesky factor of the covariance matrix Σx, and Q is the Cholesky factor
of the observability Gramian Q, while U , S and V are the SVD of the matrix R′Q with
U ′U = I, V ′V = I and S diagonal with decreasing entries. We take S as the square matrix
containing only the non-zero singular values (and drop the columns of U and rows of V
corresponding to the zero singular values), so that S is invertible by construction.

Now consider the variable transformation x̂ = H̃x, Â = H̃AH̃−1, B̂ = H̃B, Ĉ = CH̃−1.
Using that H̃−1 = RUS−1/2, straightforward algebra shows that

L
(

Â, B̂,Σε

)

= H̃L (A,B,Σε) H̃
′ = L

(

Â′, Ĉ ′
)

= (H̃ ′)−1L (A′, C ′) H̃−1 = S. (47)

Equ. (47) is a remarkable result. It shows that in the new vector x̂ the variables are ordered
such that x̂i has both the i-th highest variance, and makes the i-th highest contribution
to future values of y. For the reduced model, we pick the first k components of x̂, or the
first k rows of H̃ , such that the diagonal elements Si,i are negligible for i > k:

H = H̃1:k,: (48)

3.2.4 Properties of balanced reduction

Is the reduced model (30) an optimal approximation to (29) in any sense? With the choices
of H that we have discussed, it is not a strictly optimal. Nevertheless, balanced reduction
has a strong performance guarantee (cf. Antoulas (2005, Theorem 7.10), Antoulas (1999,
Section 2.6)):

distance(ExactModel, ReducedModel) ≤ 2(σk+1 + . . .+ σn) (49)

Here, the σ’s are the singular values in (45) (called “Hankel singular values”) that were
omitted in the construction of H in (48). The distance measure in (49) is the Hankel norm,
which is defined as the maximum distance in the future response

√

√

√

√

∞
∑

i=0

||yt+i − ŷt+i||2 (50)

to any sequence of past shocks εt−i with unit length:
√

√

√

√

∞
∑

i=0

||εt−i||2 = 1 (51)

In particular, the difference in the usual impulses responses between exact and the reduced
models cannot be bigger than the bound (49). This explains why balanced reduction is
the standard aggregation method in the control literature.

There exist even better, but more complicated approximations than balanced reduc-
tion. The theoretical lower bound on the distance between the two models is σk+1. This
bound can actually be attained (Antoulas 1999, Sections 2.6.1,3.2). For us, it seems not
worthwhile to investigate more complicated methods, because our main problem is how to
adapt these aggregation techniques to the type of models that we are interested in, namely
linear DSGE models. This is the topic of Sections 3.3 and 3.4.
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3.3 The Aggregation Problem in Linear RE Models

The model we want to analyze is given in the form of a linear rational expectations (RE)
model, defined through a finite number of equations in a finite number of variables for
each model period t. If the original model contains a continuum of state variables, it has
first to be discretized. Examples are the discrete models of Section 2.4.3 and A.4. After
linearizing this model around the steady state (cf. Section 3.1, Step 3), we assume that
the model can be written in the form

xt = Txt−1 +Ddt + Fεt (52a)

dt−1 = Et−1 [Ex1xt−1 + Ex0xt + Ed0dt] (52b)

yt = Cxt (52c)

with given matrices T , D, F , Ex1, Ex0, Ed0 and C. The vector d contains all the decision
variables that are determined by the system of expectational equations (52b). In the
stochastic growth models, these are the parameters of the consumption function St, which
are pinned down by the household Euler equations. The vector x contains all the other
variables. For example, in the growth model, this includes the complete information about
the cross-sectional distribution of capital, collected into the vector Φt, together with Zt and
τk
t . Again, yt collects the aggregate variables of interest. Notice that it is not restrictive

in (52c) to assume that y is a known function of x only, because we can always augment
x by elements of y and add corresponding equations to (52a).

The solution to this model is a linear decision function

dt = DXxt−1 +DEεt (53)

This generates dynamics for the state x of the form (29a), with A and B given by

A = T +DDX (54a)

B = F +DDE (54b)

We assume that (52) has a unique stable solution.
The aggregation techniques of Section 3.2 do not directly apply to models of the type

(52), for the following reasons.

1. The dynamics of the model (52) is not known before we solve it, and in general
we first have to deal with the aggregation problem before we can solve the model.
In particular, we cannot apply the methods of Section 3.2 that make use of the
covariance matrix Σx.

2. There is a feedback from the aggregation to the solution of the model. If we replace
the state vector x by the reduced vector x̂, we assume, explicitly or implicitly, that the
agents in the model base their decision only on x̂, not on x. The way we handle the
aggregation problem will therefore have an effect on the solution (53), and therefore
the dynamics of the model.
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3. The model may not only have a high-dimensional state x, but also a high-dimensional
decision vector d. So we have to think not just of state, but also of policy aggregation.

4. Since economic agents are assumed to base their decisions on x̂, we will probably
require that x̂ contains those aggregate variables that are important for the agents’
decision and that we assume are actually observed. So we have to identify those
variables and include them into x̂.

To handle the last issue, we assume that the vector of aggregate variables yt includes all the
aggregate variables that economic agents base their decision on. We therefore require that
yt contains at least those variables that enter into equation (52b), and therefore directly
influence decisions at time t− 1 or t. These dependencies are captured in the matrices Ex1

and Ex0. While these matrices can be big, it is typically the case that they have very low
rank. For example, in the growth model, the state vector x enters the Euler equations (16)
only through three variables: the interest rate and the two exogenous states, productivity
and capital tax rate. Therefore, the rank of

[

Ex1 Ex0

]

equals three. In the SDP model of
Section A, this rank is four. That y contains all the decision-relevant variables then means

[

Ex1 Ex0

]

∈ span(C) (55)

where span(X) denotes the space spanned by the rows of the matrix X. We further require
that complete information about yt is contained in x̂t. This means that

C ∈ span(H) (56)

Combining (56) and (55) we get the following requirement on H :
[

Ex1 Ex0

]

∈ span(H) (57)

3.4 Exact and Almost-Exact Aggregation in Linear RE Models

3.4.1 Exact State Aggregation

Let us first consider the case that exact aggregation of the linear RE model (52) is possible.
Denote the dimension of x by n. We want to replace x by a state vector x̂ of dimension
k < n. The key condition for exact aggregation is that there exists a k × n-matrix H and
a k × k-matrix T̂ such that

HT = T̂H (58)

and H satisfies the spanning requirement (57). We can again normalize H to be orthogonal
as in (32). Then we get

T̂ = HTH ′ (59)

which is similar to a coordinate transformation. Furthermore, (57) and (32) imply that
there exist unique matrices Ex̂0 and Ex̂1 such that

Ex0 = Ex̂0H (60a)

Ex1 = Ex̂1H (60b)
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Equ. (56) implies that there is a unique matrix Ĉ such that

C = ĈH (61)

Premultiplying (52a) by H and using (31), (58), (60) and (61) we obtain from (52) the
reduced model

x̂t = T̂ x̂t−1 +HDdt +HFεt (62a)

dt−1 = Et−1 [Ex̂1x̂t−1 + Ex̂0x̂t + Ed0dt] (62b)

yt = Ĉx̂t (62c)

In which sense is (62) equivalent to the original model (52)? Using (58), we have derived
(62) from (52). This implies the following. If a stochastic process (xt, dt, yt) is a stable
solution of (52), then (x̂t, dt, yt) is a stable solution of (62), because the stability of xt

implies the stability of x̂t = Hxt. We would like to have a statement saying that (62) has a
unique stable solution if and only if (52) has a unique stable solution. But this is not true
in general. The reason is that (62) does not tell us anything about those components of x
that do not affect future y’s, and therefore do no enter x̂. For example, the original model
(52b) may contain an equation xi,t = 2xi,t−1 and say that xi,0 is predetermined. Then (52b)
does not have a stable solution. However, if xi,t does not enter into x̂t, the reduced model
(62) can still have stable solutions. Similarly, (52b) may contain an equation xi,t = 0.5xi,t−1

and say that xi,0 is not predetermined. Then (52b) has a continuum of stable solutions.
If xi,t does not affect x̂t, then (62) can still have a unique stable solution.9 The following
proposition identifies a sufficient set of conditions such that a unique stable solution of (52)
implies a unique stable solution of (62).

Proposition 1. If

• (58) holds

• the process (xt, dt, yt) is the unique stable solution of model (52)

• the matrix T is asymptotically stable

then (x̂t, dt, yt) is the unique stable solution of the reduced model (62), with x̂t = Hxt

always.

Proof. Cf. Appendix C.1.

What is remarkable about model (62) is that the possibility of aggregation can be
judged from the matrix T , which is part of the description of the linear RE model, without
knowing the solution of the model. The next section will show how to check for exact and
almost-exact aggregation.

9Notice that if we say that a model has a stable solution, this means that it has a stable solution for
arbitrary initial values of the predetermined variables. For example, we say that the model xt = 2xt−1

with x0 given does not have a stable solution, although it has one for the special case x0 = 0.
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3.4.2 Conditions for exact and almost-exact state aggregation

The last section has shown a very favorable case, namely exact aggregation. To check
whether exact aggregation holds, we follow the procedure of Section 3.2.2, and compute
the observability matrix

Q =













C
CT
CT2

· · ·
CTn−1













(63)

where n = dim(T ). We have the following

Lemma 1. If rank (Q) = k, then there is a k×n-matrix H and a k×k-matrix T̂ satisfying
(32), (56) and (58).

Proof. From the Cayley-Hamilton theorem, there exist real numbers λ0, λ1, . . . , λn−1 such
that T n =

∑n−1

i=0
λiT

i. This implies that CT n is spanned by the rows of Q, and therefore

QT = ΛQ (64)

with

Λ ≡















0 I 0 0 . . . 0
0 0 I 0 . . . 0
...

...
...

. . .
...

...
0 0 0 0 . . . I
λ0I λ1I λ2I λ3I . . . λn−1I















(65)

If rank (Q) = k, the SVD of Q can be written as

Q =
[

U1 U2

]

[

S 0
0 0

] [

V ′
1

V ′
2

]

= U1SV
′
1 (66)

S ≡ diag(σ1, . . . , σk) (67)

Using (66) in (64) we get U1SV
′
1T = ΛU1SV

′
1 . Now set H = V ′

1 , which satisfies (32). We
get HT = S−1U ′

1ΛU1SH , since S is invertible by construction. This shows (58) with T̂ =
S−1U ′

1ΛU1S, which is a k × k-matrix. To verify (56), notice that C =
[

I 0 . . . 0
]

Q =
([

I 0 . . . 0
]

U1S
)

H .

The interpretation of the lemma is the following. If rank (Q) = k, then there is a vector
of k variables, x̂t, that contains the complete information about the contribution of xt to
Et yt+i. Then we can replace the state xt in (52) by x̂t without loss of precision in the
prediction of yt+i.

Is this result helpful for the applications that we are interested in? The crucial finding
is the following. While the theoretical rank of Q is equal or close to n, it very often turns
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out that the numerical rank of Q is much lower than n. This means that the the SVD of
Q is not given by (66), but by

Q =
[

U1 U2

]

[

S 0
0 E

] [

V ′
1

V ′
2

]

= U1SV
′
1 (68)

E ≡ diag(σk+1, . . . , σn) (69)

where σk+1 < εσ1 and ε is machine precision. On a PC, we have ε ≈ 10−16. In this case,
treating E as zero and proceeding as above we obtain an approximation error that is in the
same range as all the errors that result from working on a computer with finite precision.10

I call this case “almost-exact” aggregation. One could also call it “machine-precision (MP)-
exact”, because it is the number of digits of the computer what limits precision here. We
will see below that MP-exact aggregation holds for the growth model and the SDP model,
but not for the OLG model.

The phenomenon that a large dynamical system allows for almost exact aggregation
is not specific to economics. It seems to be a frequent finding in the control literature
for systems with few inputs (here: shocks) and few outputs (here: relevant aggregate
variables). Antoulas, Zhou, and Zhou (2002) give a partial explanation of this finding, cf.
also Appendix C.2.

3.4.3 Exact policy aggregation

The method of Section 3.4.2 allows us to approximate the original model (52) by the model
(62) with a much smaller state vector x̂. However, the decision vector d may be just as
big as the original state vector. Then we are left with an equation system with few states,
but many decision variables. In standard software to solve linear rational expectations
models, the computational complexity depends on the total number of variables, not on
the number of states. To my knowledge, there is no algorithm available that would exploit
the fact that the state vector is very small compared to the decision vector. In this section
I will present an iterative method that does this.

The method is based on the following observation. If the model (62) has a unique stable
solution, standard arguments show that the decision function can be written in the form

dt = DX̂ x̂t−1 +DEεt (70)

which refers only to x̂t−1, not xt−1. No matter what the dimension of dt is, we see from
(70) that dt lives in a subspace of dimension at most dim(x̂) + dim(ε). This shows that dt

can be approximated as a linear combination of at most dim(x̂) + dim(ε) basis vectors. If
we collect those into the columns of the matrix G, we can write:

dt = Gd̂t (71)

10Of course, we can be less stringent and consider singular values smaller than, say, 10−10σ1 as essentially
zero, which further reduces the dimension of the approximate model. This will depend on the accuracy
requirement in each specific application.
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W.l.o.g., we can assume that G′G = I, such that d̂t = G′dt. If we have G or an estimate
of it, we can plug (71) into (62), after premultiplying (62b) by G′, and further reduce the
model to

x̂t = T̂ x̂t−1 +HDGd̂t +HFεt (72a)

d̂t−1 = Et−1G
′
[

Ex̂1x̂t−1 + Ex̂0x̂t + Ed0Gd̂t

]

(72b)

The matrixG spans the space in which the decision vector dt lives. Standard approximation
techniques such as low order polynomials or splines do something similar, and define G
implicitly. However, since G is exogenously given, this implies some loss of accuracy. Our
aim is to find out the exact subspace in which dt lives, so that (71) does not reduce the
accuracy of the solution. Unfortunately, this is a nonlinear problem, and we need an
iterative algorithm to solve it. To do this, assume for a moment that x̂ follows

x̂t = Âx̂t−1 + B̂εt (73)

for given matrices Â and B̂. Using (73), and writing the optimal decision as (70), we get
from (62b) that

0 = Et−1 [Ex̂1x̂t−1 − (DX̂ x̂t−2 +DEεt−1) + Ex̂0x̂t + Ed0 (DX̂ x̂t−1 +DEεt)]

= Ex̂1

(

Âx̂t−2 + B̂εt−1

)

− (DX̂ x̂t−2 +DEεt−1)

+ Ex̂0

(

Â2x̂t−2 + ÂB̂εt−1

)

+ Ed0DX̂

(

Âx̂t−2 + B̂εt−1

)

(74)

(74) has to be satisfied for all x̂t−2 and all εt−1. Collecting terms we get

0 = Ex̂1Â−DX̂ + Ex̂0Â
2 + Ed0DX̂Â (75)

0 = Ex̂1B̂ −DE + Ex̂0ÂB̂ + Ed0DX̂B̂ (76)

(75) is a Sylvester equation in DX̂ , which can be solved quite fast, because state reduction

yields a matrix Â of moderate dimension (bringing Â into upper triangular form with
a Schur decomposition, (75) can be solved column-wise). Then we can use DX̂ to get

an estimate of the subspace in which the solution lives, and we can iterate on Â in the
following way:

1. Set Â = HTH ′.

2. For given Â, solve (75) for DX̂ .

3. Choose G = orth(DX̂).

4. Given G, solve the linear model (72). This gives us a solution of the form

d̂t = D̂X̂ x̂t−1 + D̂Eεt (77)

Then set Â = HTH ′ +HDGD̂X̂ and go to 2.
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5. Iterate 2– 4 until convergence.

Notice that this algorithm does not just alternate between computing D̂X̂ , given Â, and

forming Â from D̂X̂ . The algorithm iterates not on the decision matrix D̂X̂ , but on the
subspace in which the decision vector lives.

There is no guarantee that this algorithm works. First, we have no proof that the
iterations converge. A second, more subtle problem is the following. If we have correctly
identified G, we know that the exact solution, which we assume to be the unique stable
solution of the model (62), is a stable solution of (72). But we have no guarantee that it is
the unique stable solution of (72). Policy reduction might induce spurious indeterminacy.
In particular, even if Ed0 is asymptotically stable, the matrix G′Ed0G, which is the matrix
for iterating (72b) forward, might not be.11 Although there is no proof, the algorithm
appears to be very effective and has converged in 2 or 3 iterations in all the applications I
have done so far. Getting a deeper understanding of why this works so well must be left
for future research.

3.5 Approximate LS Aggregation in Linear RE models

Even if we can achieve almost-exact aggregation by the methods of Section 3.4, we may
want to further reduce the dimensionality of the model, at some cost in terms of reduced
accuracy. One important reason is that low-dimensional models allow higher-order approx-
imations in aggregate variables, which is important for example in models of asset choice
(Reiter 2009a). The great majority of the existing macroeconomic applications, following
Krusell and Smith (1998), use approximations with a very low number of state variables,
typically one or two. Below we will study approximations with up to 20 state variables.
This is the range of variables that one can reasonably handle with nonlinear methods, for
example by projection methods with Smolyak polynomials (Malin, Krueger, and Kubler
2007).

The algorithm presented below is a linear version of the Krusell/Smith algorithm. Ap-
proximate aggregation in the sense of Krusell/Smith is based on the following ideas:

• Economic agents base their decisions at time t on a reduced set of state variables, x̂t.

• Agents take as given an aggregate law of motion for the reduced state vector. In the
context of linear models, this can be written as

x̂t = Âx̂t−1 + B̂εt (78)

Agents make their decisions optimally, conditional on the perceived aggregate dy-
namics (78).

11This problem does not appear in the examples of this paper, but it did happen occasionally in other
applications. To solve it, we can try to include more vectors into G (Step 3 of the algorithm). A natural
way to do this is to include in G the eigenvectors of the largest (in magnitude) eigenvalues of the matrix
Ed0. Since this matrix is sparse, fast algorithms for computing the largest eigenvalues and -vectors are
available. Including 6 or 10 eigenvectors has always been sufficient.
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• In equilibrium, the dynamics of the model implied by the decisions of agents must
be compatible with the aggregate law of motion (78) in a least-squares sense. That
means, if agents estimate the model (78) on a long simulation of the disaggregate
model implied by the agents’ decision function, they obtain the matrices Â and B̂
that they have used in making their decisions.

This can be formalized in the following fixed point problem,

1. Guess Â and B̂ where Â is asymptotically stable.

2. Solve the system of equations (78) and(72b) to get the matrices DX̂ and DE of the

decision rule d̂t = D̂X̂ x̂t−1 + D̂Eεt.

3. Set A and B as

A = T +DGD̂X̂H (79a)

B = F +DGD̂E (79b)

and compute
Σx = L (A,B,Σε) (80)

Notice that the matrix A has to be asymptotically stable for Σx to be defined. If it
is not, the pair (Â, B̂) is not admissible.

4. Update Â and B̂ by the OLS regression

Â = HAΣxH
′ (HΣxH

′)
−1

(81a)

B̂ = HB (81b)

5. Iterate until the results in (81) are consistent with the guess in Step 1. This can be
done by a quasi-Newton algorithm over the elements of Â and B̂.

Notice that this algorithm, by exploiting the linearity of the setup, avoids the use of
simulation methods, and is therefore not affected by sampling errors, unlike the original
(nonlinear) algorithm of Krusell and Smith (1998).

3.6 Evaluating Accuracy

3.6.1 Types of approximation error

Solving the model by the method outlined in Section 3.1 involves three types of approxi-
mation error (next to the usual errors from working on a computer with finite precision):

1. error from discretization

2. error from linearization
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3. error from aggregation.

The first type of error already affects the steady state solution of the model. It can be
estimated by increasing the size of the discrete approximation (grid points in cross-sectional
distribution, order of spline approximation of policy function etc.). Some estimates for the
growth model are given in Reiter (2009b). The error from the linearization in aggregate
variables can be estimated when computing higher order approximations. This is done in
Reiter (2009a). Since the topic of the present paper is aggregation, I focus exclusively on
the error from aggregation, arising from the reduction of the state and the policy vector.

3.6.2 How to measure the aggregation error

We measure the aggregation error by comparing the solution of the reduced model, rep-
resented by the matrices Â, B̂ and Ĉ from (72), with the solution of the disaggregate
model. Often we can compute the exact solution of the (linearized) model, represented
by the matrices A, B and C obtained from (54). Then we can measure the quality of an
approximate solution directly against the exact solution.

In general, we only have an approximate solution. Then, the key to an accuracy check
is the disaggregate model that is implied by the decision functions of the reduced model.
The disaggregate model is defined by the matrices A and B given by (79). This is the
analogue to the simulation procedure used in Krusell and Smith (1998), Den Haan (2007)
and many other papers to check accuracy. In all the examples below, it turns out that
checking the approximate model against the disaggregate solution (79) is a good substitute
for checking against the exact solution (54).

3.6.3 A variety of accuracy measures

We judge the quality of the the reduced model (30) by its the ability to give correct
predictions of the variables of interest yt, if both models are driven by the same shock. We
measure this using several statistics. All statistics refer to the aggregation error.

Accuracy measure 1: unconditional mean squared error

This measure tells us how well a model predicts the relevant aggregate variables (for ex-
ample capital) on average, where the average is taken over the ergodic distribution of the
model solution. To compute it, combine (29a) and (30a) into

x∗t = A∗x∗t−1 +B∗εt (82)

x∗ ≡

[

xt

x̂t

]

, A∗ ≡

[

A 0

0 Â

]

, B∗ ≡

[

B

B̂

]

(83)

Since
E(yt − ŷt) = 0, (84)
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the unconditional mean squared error is given by

E[(yt − ŷt)(yt − ŷt)
′] =

[

C −Ĉ
]

Σx∗

[

C −Ĉ
]′

(85)

where Σx∗ = L (A∗, B∗,Σε) is the unconditional variance-covariance matrix of x∗. The root
mean squared error of the prediction of yi,t is then given by the i-the element on the main
diagonal of (85). Below we will report the root mean squared error, normalized by the
standard deviation of yi,t:

√

[

Ci −Ĉi

]

Σx∗

[

C −Ĉ
]′

CiΣxC
′
i

(86)

where Ci is defined as the i-th row of the matrix C. This statistic can be interpreted
as the unconditional standard deviation of an infinite-horizon forecast error. It therefore
addresses the main concern in Den Haan (2007), who suggests to use long-term forecasts
to assess accuracy.

Accuracy measure 2: impulse response error

If the model is driven by several exogenous shocks, the statistic (86) measures the joint
effect of all the shocks on the forecast error. To analyze separately how well the reduced
model predicts the effects of each type of shocks, one can look at differences in impulse
response functions. The impulse response of yit to shock j is given by

yi,t;j = CiA
tBej (87)

where ej is the impulse vector which has unit entry at position j and is zero otherwise. I
report

maxt |yi,t;j − ŷi,t;j|

maxt |yi,t;j|
(88)

where the maximum goes over t = 1, . . . , 1000.

Accuracy measure 3: prediction error along transition path

While the first two measures refer to the prediction error in response to shocks, the third
measure asks how well the reduced model predicts the dynamics of y if we start out from
an arbitrary initial state x0. Then E[yi,t|x0] = CiA

tx0. From (31) we have x̂0 = Hx0. Then

E[ŷi,t|x0] = ĈiÂ
tHx0. Then the maximum in the prediction error over all unit vectors x0

is given by the matrix norm

max
x0 s.t. ‖x0‖2=1

‖E[ŷi,t|x0] − E[yi,t|x0]‖2 = ‖CiA
t − ĈiÂ

tH‖2 (89)

I report

min
{

max
t
βt‖CiA

t − ĈiÂ
tH‖2, 1

}

(90)

where the maximum again goes over t = 1, . . . , 1000. Discounting with β gives higher
weight to earlier periods.
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4 Numerical Results

To relate our findings to the existing literature, we begin the presentation of the results
in Section 4.1 with the linearized version of the Krusell/Smith solution. We will confirm
earlier findings about the precision of this method in the model with technology shocks,
and demonstrate that the model with tax shocks requires an approximation with more
than one moment in order to give a reasonably precise approximation. Section 4.2 applies
the model reduction techniques of Section 3.2 to all three example economics, and stud-
ies how the precision of the reduced model increases with the number of statistics used.
Section 4.3 computes the almost-exact aggregation solution of Section 3.4 for all models.
Section 4.4 looks again at approximate aggregation with the Krusell/Smith solution, now
considering higher-dimensional approximations and different types of state variables. Fi-
nally, Section 4.5 discusses whether aggregation in the growth model holds exactly in the
theoretical sense, or only up to machine precision in the sense of Section 3.4.2.

4.1 Linearized Krusell/Smith Solution With Few Moments

In a model similar to the one of Section 2.4.3 with nP = 1, the celebrated finding of Krusell
and Smith (1998) was that one can obtain a sufficiently precise solution of the model with an
approximation where the only endogenous state variable is aggregate capital. To replicate
those results, and consider solutions using higher-order moments, define the state vector
of the growth model with nP = 1 as xt =

[

Φt Zt τk
t

]′
, and define the matrix H as

H =



















k̄1 k̄2 . . . k̄nk
0 0

k̄2
1 k̄2

2 . . . k̄2
nk

0 0
...

...
. . .

...
...

...
k̄m

1 k̄m
2 . . . k̄m

nk
0 0

0 0 . . . 0 1 0
0 0 . . . 0 0 1



















(91)

Then x̂t = Hxt contains the first m non-central moments of the distribution of capital,
and the two exogenous processes.12 With this choice of H , we then apply the method of
Section 3.5.

Figure 1 presents the results. It shows impulse responses to technology and tax shocks,
using approximations with an increasing number of moments. (“Three moments” means
that m = 3 in (91), etc.) Each panel of Figure 1 compares four different solutions to the
model:

12A serious numerical implementation needs some modifications. First, non-central moments are inte-
grals over monomials in k. If the required number of moments goes beyond four or five, this leads to
multicollinearity in the columns of H . One should therefore use integrals over orthogonal polynomials of
k, such as Chebyshev polynomials (Judd 1998, Section 6.3). Second, I find it is better to use polynomials
in log(k), not k, except for the first moment, which must exactly be aggregate capital, because of its
importance for factor prices. The details for these modifications of H can be found in the Matlab program
“hpoly.m”.
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1. The exact solution of the discrete model (labeled “Exact”), with A, B defined as in
(54).

2. The reduced model, obtained from the exact solution via (33), using the matrix H
from (91). This is labeled “ReducSol”.

3. The approximate solution with H from (91), computed by the Krusell/Smith algo-
rithm of Section 3.5 (“ApprAggr”).

4. The disaggregate model (79) obtained from the approximate model (“ApprDisaggr”).13

We can interpret this as the outcome of simulating the disaggregate economy, using
the household decision rules obtained from the approximate model.

Panel a) of the figure illustrates the famous result that “one moment is enough”.
The impulse responses of the four different solutions to a technology shock are visu-
ally indistinguishable. The relative error in the impulse response, measured as in (88),
equals 0.0029. Expressing this as an R2, as is often done in the literature, it would give
R2 = 1 − 0.00292 = 0.999991.

Panel b) of the figure shows the analogous result for the tax shock. It looks quite
different. All the approximations are far off the exact solution. What goes wrong here?
A tax shock triggers the following responses. On impulse, the shock is a redistribution
from the wealth rich to the poor. Then there is a first round effect: for given expected
interest rates, aggregate consumption goes up, saving goes down, because the poor (in
terms of assets) have a larger propensity to consume out of their wealth. But this triggers
a second-round effect: the reduction in aggregate savings means that future capital goes
down, and therefore expected future interest rates go up. This has the tendency to increase
savings, and therefore partly offsets the first-round effect. The approximation error arises
because households look at the mean capital stock only. So they forget about the effect
of the redistribution as soon as they forget the shock itself. Then they underestimate the
future reduction in saving and the corresponding increase in interest rates, which results in
a smaller second-round effect. This means that the first round effect (reduction in saving)
is dominating more strongly.

The remaining panels of Figure 1 investigate whether the problems can be solved by
enlarging the state space. The news is good: the discrepancies between solutions gradually
disappear when using more moments, cf. panels c)–f).

There is a second, and perhaps more important piece of good news in Figure 1: a
careful accuracy check reveals the failure of the approximation. While the comparison to
the exact solution is usually not available (because the exact solution cannot be computed),
it is always possible to compare the approximate model solution (“ApprAggr”) to the
disaggregate model under approximate decision functions (“ApprDisaggr”). This is what
Krusell and Smith (1998) already did. Those two solutions differ by the same order of
magnitude as the exact and approximate solution differ. Applying due diligence, the
failure of the approximation does not go unnoticed.

13In this section I do not use policy aggregation, so G = I in (79).
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4.2 Model Reduction in State Space Form

Even in the simple stochastic growth model, we have seen that in general several moments
are necessary to achieve a satisfactory level of accuracy. We now look at these issues in
more detail. The questions are: how does the accuracy of the reduced model depend on
its dimension? How should the variables in the reduced model be chosen?

In this section, we compute the exact solution of the linearized model, and study
whether this solution allows model reduction, using the techniques of Section 3.2. We do
this for the models for which we can compute the exact solution, the growth model with
nP = 1 (i.i.d. income shocks), the SDP model, and the OLG model. We can then measure
accuracy as the distance between the exact solution and the reduced model.

Figure 2 reports results for the growth model. We consider four sets of aggregate statis-
tics: the three approaches of Section 3.2, namely PCA, CEA and balanced reduction, and
the traditional macroeconomic approach, namely moments of the cross-sectional distribu-
tion, as explained in Section 4.1. In each case, we vary the number of statistics of the
cross-sectional distribution between 1 and 100 (again, the exogenous variables Z and τk

are not counted here, so that the total number of state variables is higher by two). For the
approaches based on control theory, the maximum number of statistics is the numerical
rank of the covariance matrix or the observability matrix. All the accuracy results refer
to the forecast of aggregate capital. This is the relevant variable in this model, because
it determines all the prices in the economy. Numbers are decimal logs. All the statistics
are truncated above at a relative error of 1. The two top panels of the figure report the
impulse response error, defined in (88). The two bottom panels report the RMSE of the
infinite-horizon forecast error and the maximum error along a transition, defined in (86)
and in (90), respectively.

The following conclusions emerge. First of all, by choosing a state space of about 50
variables, the approximation error can be made very small (relative errors in the range
10−8 to 10−12). Given that 10−16 is machine precision, we cannot expect more. Balanced
reduction performs best when the criterion is to predict the response to shocks, both at
short-to-medium horizon (impulse responses) or at infinite horizon (unconditional forecast
error). This is what we should expect from the theory reported in Section 3.2.4. For the
maximum error in a transition, the CEA approach is best. This is again not surprising,
because CEA includes the expected values of (not so distant) future capital stocks in the
state vector, so this should work starting from any initial distribution. However, balanced
reduction is also doing quite well in this respect, if we consider that the maximum error in
a transition is a very tough criterion.

PCA is not competitive, for any of the criteria considered. This shows that the solution
contains many components that vary substantially (and are therefore included by PCA)
but are not relevant for the prediction of the aggregate capital stock. Changes in the
distribution that happen over a range where the consumption function is almost linear
will probably fall into this category. It is reassuring to see that the moments-approach,
which is an intuitive one, performs reasonably well. It fails only for the transition error.
Even putting 100 moments in the state vector, one can still find initial conditions for the
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distribution of capital for which the reduced model totally fails to predict the transition
path. Only CEA and balanced reduction can fix this problem.

Figure 3 provides the same information for the SDP model, where the prediction error
is for the nominal interest rate R. It confirms most of the results obtained from the growth
model. There are two significant differences, however. First, moments as state variables
(bivariate moments of the joint distribution of prices and firm-specific technology) are not
as successful as in the growth model. This underlines the importance of having a model
reduction procedure that is independent of the structure of the underlying state space.
Another difference is that CEA and balanced reduction perform about equally well with
respect to the maximum transition error.

Before you conclude that approximate aggregation always works (as I did believe at
some point), it is useful to look at Figure 4, which reports results for the OLG model.
The model has 720 state variables (capital held by the 720 cohorts). The moments-based
approach has now been replaced by the approach of grouping together nearby cohorts.
For example, when using 20 statistics, the state variables are the capital stock held by
cohorts 1–60,61–120,. . .,661-720. The results are strikingly different. Even going up to 120
state variables, errors are still in the range of 10−4 to 10−5, and bigger for the maximum
transition error. Households belonging to different cohorts behave in a distinctly different
way, which does not allow aggregation at a high level of precision. One might feel that
a household that has 700 months to live should be almost identical to one that has 701
months to live, but this is not true at the level of precision that we require, and that we
have achieved in the models with infinitely-lived agents. Still, the control-theory based
techniques of Section 3.2 are useful. Balanced reduction (but not CEA) performs better
than simply grouping cohorts.

4.3 Almost-Exact Aggregation

In the last section we have asked whether the exact solution of the model, in cases where
we can compute it, is amenable to aggregation. We now turn to the task of applying
aggregation directly to the DSGE model. This is the only choice if the model is too big to
be solved without aggregation. As we have explained in Section 3.3, the novel element is
that now the economic agents themselves are assumed to apply approximate aggregation,
so that the aggregation procedure feeds back into the solution of the model. Therefore it
is not clear whether the positive results of Section 4.2 go through.

Section 3.4 has shown a way to solve the DSGE model with almost-exact aggregation,
if the numerical rank of the observability matrix is smaller than the dimension of the
system. Table 2 reports the results from applying this algorithm. The table indicates
the variable which should be predicted (capital in the growth model, inflation or nominal
interest rate in the SDP model), the frequency of the model (from monthly to annual), the
dimensions of state and decision variable of the original model and of the reduced model,
then the maximal error in the impulse response of both shocks (technology and shocks in
the growth model, technology and interest rate in the SDP model), the maximal error in
the transition and the RMSE of the infinite-horizon forecast. For each model, the first line
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V. Fr. d(x) d(d) d(x̂) d(d̂) IR tec. IR tax ErrTr. RMSE

GM K 4 1003 100 77 27 1.1e-12 4.6e-11 2.5e-11 1.5e-12
3.4e-12 4.6e-11 2.7e-10 1.5e-8

GM, στ = 0 K 4 1003 100 77 27 4.4e-13 3.5e-11 2.0e-11 2.1e-8
4.8e-12 6.4e-11 3.9e-10 3.0e-8

GM K 1 1003 100 102 26 6.2e-13 1.8e-12 3.3e-11 8.0e-13
1.2e-12 4.1e-11 5.2e-11 2.0e-8

GM K 12 1003 100 65 23 5.1e-12 7.2e-10 3.1e-10 3.9e-8
3.8e-12 7.2e-10 2.9e-10 3.5e-8

GM,nP = 31 K 4 31003 3100 202 31 2.5e-11 4.9e-11 7.8e-8 3.7e-11
SDP π 4 744 734 94 32 1.3e-12 2.2e-12 2.3e-12 1.6e-12

7.5e-11 1.7e-10 3.0e-10 2.5e-8
SDP R 4 744 734 94 32 1.7e-12 5.1e-13 2.3e-12 1.3e-12

7.0e-11 6.1e-11 3.0e-10 3.4e-8

Table 2: Results Almost-Exact Aggregation

reports these statistics for the difference between the the reduced model and the implied
simulated model (“ApprAggr” and “ApprDisaggr” in the terminology of Section 4.1). The
second line reports the difference between the the reduced model and the exact solution,
in those cases where it is available (“ApprAggr” and “Exact”). The results are a clear
success. Relative errors are mostly in the range of 10−10 or better. On a machine that
does basic operations with 16 digits accuracy, one cannot expect more. The RMSE of
the infinite-horizon forecast is difficult to compute, and it is not clear whether differences
below 10−8 are significant or just measurement errors.

Notice that the difference between solutions “ApprAggr” and “ApprDisaggr”, which
can always be computed, is a very good indicator for the difference between solutions
“ApprAggr” and “Exact”.

The dimension of x̂ is chosen by the algorithm as the numerical rank of the observability
matrix (63). Of course, we can reduce the dimension of x̂ quite a bit if we are willing to give
up some precision. For example, in the benchmark growth model, if we choose dim(x̂) = 40
rather than dim(x̂) = 77, we lose about two or three digits of precision, which would still
be sufficient for any practical application.

4.4 Approximate Aggregation

We now return to the problem of approximate aggregation with a small number of state
variables, which we had already touched in Section 4.1. We will test the accuracy of the
Krusell/Smith algorithm of Section 3.5, applied to the growth model with nP = 1. Now
we vary the number of endogenous state variables between 1 and 20, and compare the use
of moments to the use of CEA and balanced reduction. PCA was dropped from the list,
because it already proved to be non-competitive in Section 4.2.
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The results in Figure 5 should be compared to Figure 2. Accuracy is measured as
the distance between the approximate solution and the exact solution of the linearized
model. Results for more than 12 moments are not reported because the algorithm did
not converge. There is a slight difference in the choice of state variables for the case of
CEA and of balanced reduction, compared to Section 4.2. The first statistic is now always
the aggregate capital stock, because it is what determines prices, and the reduced model
assumes that the agents know prices, so this information has to be contained in the state
vector.

The main finding is that the accuracy of the KS method is quite similar to the accuracy
of directly aggregating the solution of the model, as we did in Section 4.2. That the
aggregation feeds back into the model solution, because agents base their decision on the
aggregate model, does not pose a serious problem for the accuracy of the approximate
model. The exception to this finding is that the maximum error along a transition is now
considerably higher, although accuracy is still very good for the CEA approach. The KS
approach selects the dynamics of x̂ to be optimal in the OLS sense, which does not care
about the transition error from arbitrary initial conditions. If the error along a transition
path is the most important criterion, one could certainly find modifications of the algorithm
that improve in this direction.

Results for the growth model with nP = 31 and for the SDP, which are not reported
here, confirm these conclusions.

4.5 Is Exact Aggregation Possible?

In Section 4.3 we have seen that a model with a very reduced state vector is able to
provide an approximation basically up to machine precision. We then have to ask whether
the theoretical model allows exact aggregation. This means that the observability matrix Q
in (63) has exact, not just numerical rank, smaller than n. With purely numerical methods,
it is not easy to give a definite answer to this question, but the Popov-Belevitch-Hautus
test is helpful in this respect: the observability matrix of the pair (T, C) has rank equal
to dim(T ) if and only if there exists no right eigenvector of T orthogonal to the rows of C
(Williams and Lawrence 2007, Theorem 4.7). More generally, the number of eigenvectors
of T not orthogonal to C is a good indicator of the rank of the observability matrix. This
is illustrated, for the case that T can be diagonalized, in Appendix C.2. Figure 6 reports
this test for the growth model with nP = 1. Here, C here is the vector that computes the
mean of the cross-sectional distribution of capital, K. The upper panel plots the absolute
eigenvalues of the matrix T in (52a), in ascending order. They are quite evenly spread
between 0 and 0.9995. The middle panel plots the decimal log of the inner product of C and
the eigenvectors corresponding to those eigenvalues. For the about 50 eigenvalues closest to
unity, this inner product is large, indicating that the components of those eigenvalues are
important for the dynamics of aggregate capital. The lower panel plots the inner product
again, but now in ascending order. We see that for some eigenvectors, the inner product
is so small that we cannot be absolutely sure that it is different from zero, given that
the machine precision is 16 digits. However, only a few values are close to zero by this
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standard, and for more than 90 percent of the eigenvectors, the inner product is definitely
nonzero. We can therefore say that the very strong reduction in the number of states in
the calculations of Section 4.3 is not a theoretical, just a numerical property of the model.

5 Conclusions

The main result of the paper is that linearized DSGE models with a high number of state
variables (more than 30000 in one example) can be solved with very high precision, using
methods of approximate state and policy reduction. The paper has shown this with two
prominent examples of heterogeneous agent models, a stochastic growth model and a state-
dependent pricing model. Approximations with 50 to 200 state variables solve the model
basically up to machine precision. Even fewer states are sufficient if the approximation is
only required to capture the effects of stochastic shocks, not to predict the transition from
arbitrary initial conditions. The paper has shown how to choose the state variables so as
to get almost optimal accuracy for a given level of aggregation.

Obviously, not all high-dimensional economic models can be solved accurately. The
experience so far suggests that the following considerations are important:

• For reasons of computational efficiency, the transition matrix (matrix T in (52))
should be sparse. With more than 10000 state variables, a dense T might not even
fit into computer memory. Economically this means that, from any given individual
state today (a given level of capital, for example), there is only a small set of states
tomorrow that the agent can reach with positive probability. The level of sparsity is
usually a function of the time period. A model at monthly frequency will probably
be sparser, and therefore easier to handle, then a model at annual frequency.

• It is useful if the cross-sectional distribution affects individual decisions only through
a small set of variables. For example, the distribution of capital in the growth model
affects households only through factor prices, which are a function of the aggregate
capital stock. Knowing the whole cross-sectional distribution of capital is important
for households only insofar it helps to predict future factor prices.

• Discrete differences between types of agents may not allow almost-exact aggregation.
For example, an OLG model with many cohorts seems to require as many variables
as cohorts, if a very high level of accuracy is to be achieved.

Interestingly, the number of exogenous driving forces seems to play no essential role for
aggregation. The theory of almost-exact aggregation in Section 3.4 was based on the matrix
T which describes the dependence of the current state on last period’s state, not on the
shocks.

The most important issue that is left for future research is to investigate under what
conditions the discretized model is a good approximation to the theoretical model with
continuous state space, and whether the discrete model converges in a suitable sense to
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the continuous model, if the dimension of the state vector goes to infinity. Another in-
teresting avenue for future research is to compute approximate solutions of heterogeneous
agent models that can be interpreted as solutions under bounded rationality or limited
information. This will impose restrictions on the state variables that the economic agents
are supposed to consider when making their decisions. For example, those variables should
be measured and observed in reality. In finding the optimal state vector in this paper, we
have not considered any such restrictions.

A Example 3: A Model of Heterogeneous Firms and

State-Dependent Pricing (SDP)

The model of this section is similar to Reiter, Sveen, and Weinke (2009) insofar as price set-
ting and monetary policy are concerned. There the model also features lumpy investment
decision of the firms. In the present paper, I abstract from capital, and rather consider
firm-specific stochastic productivity.

A.1 Firms

There is a continuum of firms and each of them is the monopolistically competitive producer
of a differentiated good. At the beginning of a period, firm h is characterized by two
individual state variables, its own price inherited from the last period, Pt−1,h, and its
idiosyncratic productivity level θt,h. Each firm produces with the Cobb-Douglas production
function

yt,h = Ztθ,t,hlt,h (92)

The aggregate level of technology, Zt, is assumed to be given by the following process

lnZt ≡ zt = ρzzt−1 + ez,t, (93)

where ez,t is i.i.d. with zero mean.
Utility-maximization on the part of households implies that demand for good i is given

by

yt,h =

(

Pt,h

Pt

)−ε

Y d
t , (94)

where Y d
t is aggregate demand.

In order to change its price the firm must pay a fixed cost, denoted by κt,h, which is
measured in units of the aggregate good and given by

κt,h =

{

0 if Pt,h = Pt−1,h,
κ otherwise,

. (95)

The price adjustment cost κ is stochastic. It is independent across time and across firms.
It is realized each period before the firm set its price, and before production takes place.
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Each firm chooses prices pt,h and labor input lt,h so as to maximize its market value

E0

∞
∑

t=0

QR
0,t

{

pt,h

Pt
yt,h −Wtlt,h − κt,h

}

, (96)

subject to the constraints (92)–(95). Here,Wt is the real wage, andQR
0,t is the real stochastic

discount factor that will be defined in Section A.2.
I use a discretization that is very similar to that of Section 2.4.2, with the cross-sectional

distribution of prices replacing the distribution of household capital, and the distribution
of firm productivity replacing household productivity. Productivity θt,h follows an nP -
state Markov chain and takes on the values θ̄1, . . . , θ̄nP

. ΠP
j,j′ denotes the probability of

switching from state j to j′. The level of prices is discretized in an analogous fashion to the
discretization of capital in the growth model. I approximate the distribution of prices by
a finite number of mass points at a predefined grid p̄1, p̄2, . . . , p̄np

. Again, the boundaries
p̄1 and p̄np

must be chosen such that in equilibrium very few firms are close to it. For
the dynamics of the price level I make the same assumption that I used for capital in the
growth model. The firm chooses the price continuously, and this price is valid for the
present period, but at the end of the period the price jumps randomly to the neighboring
grid points such that the expected value is maintained. So we define the function ψ(i, p)
analogously to the function ψ(i, k) in Section 2.4.2. Define φt(j, i) as the fraction of firms
at time t that have productivity level θ̄j and price p̄i. Stack those into a column vector
Φt exactly as in (20). Then we arrive at the dynamic equation (23) in the same way as in
Section 2.4.

Since the firm problem is non-convex, optimality has to be characterized by the Bellman
equation, not by Euler equations. The variables in the model that characterize behavior
are therefore the Vt(j, i), defined as the value function of a firm with productivity level θ̄j

and price p̄i. The Bellman equation can be written as

Vt−1(j, i) = QR
t−1,t max

p,l

{

p

Pt
yt,h −Wtl − κt,h +

np
∑

i′=1

nP
∑

j′=1

ψ(i′, p)ΠP
j,j′Vt(j

′, i′)

}

+ ηc
i,j,t,

j = 1, . . . , nP , i = 0, . . . , np (97)

again subject to (92)–(95). Equ. (97) is the analogue to (17a) in the growth model. Similar
to Φt, we stack all the values Vt(j

′, i′) into the column vector Vt.

A.2 Households

The representative household maximizes expected discounted utility

E0

∞
∑

t=0

βtU (Ct, Lt) ,

where β is the subjective discount factor, Lt is the number of hours worked and Ct denotes
a Dixit-Stiglitz consumption aggregate. Defining Ct (j, i) as the amount of consumption
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bought from firms with price level p̄j and productivity level θ̄i, this aggregate can be written
as

Ct ≡

(

nP
∑

j=1

np
∑

i=1

Ct (j, i)
ε−1

ε φt(j, i)

)
ε

ε−1

(98)

with corresponding price index

Pt ≡

(

nP
∑

j=1

np
∑

i=1

p̄1−ε
j φt(j, i)

)
1

1−ε

(99)

where ε is the elasticity of substitution between different varieties of consumption goods.
With this price index, and with households allocating their spending optimally on the
available goods, consumption expenditure can be written as PtCt. I use the period utility
function

U (Ct, Lt) = lnCt + η ln (1 − Lt)

Even though financial assets are not traded in equilibrium, it is convenient to assume
complete financial markets in the model. The household budget equation then reads

PtCt + Et {Qt,t+1Dt+1} ≤ Dt + PtWtLt + Tt, (100)

where Qt,s denotes the price in period t for nominal payments in period t, and Dt+1 gives
the nominal payoff associated with the portfolio held at the end of period t. Tt is nominal
dividend income resulting from ownership of firms. Note that the stochastic discount
factor Qt,s is unambiguous in equilibrium since households are identical. Denoting the real

stochastic discount factor by QR
t,s ≡ Qt,s

(

Ps

Pt

)

, the household Euler equation is given by

QR
t,t+1UC(Ct, Lt) = βEtUC(Ct+1, Lt+1) (101)

The first order condition for labor supply is

ηCt

1 − Lt
= Wt, (102)

A.3 Market Clearing and Monetary Policy

The goods and labor market clearing conditions are

yt,h = Y d
t,h for all i. (103)

Lt =

nP
∑

j=1

np
∑

i=1

Lt(j, i)φt(j, i) (104)

Y d
t = Ct + κt (105)

κt =

nP
∑

j=1

np
∑

i=1

κt(j, i)φt(j, i) (106)
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Monetary policy takes the form of a simple interest rate rule

Rt = Rφr

t−1

(

β−1

(

Pt

Pt−1

)φπ

)1−φr

eer,t , (107)

where parameters φπ and φr measure the responsiveness of the nominal interest rate to
changes in current inflation and past nominal interest rates, respectively, and er,t is i.i.d.
with zero mean.

A.4 The Discrete Model

For each t, we have the equations (23), (93), (97)– (99), (101), (102) and (104)– (107) in
the variables Φt, Zt, Rt, Vt, Y

d
t , Lt, Ct, Wt, Pt and κt.

A.5 Parameter values

I use standard parameter values: η = 1.5, ε = 7, β = 1/1.01, φπ = 1.5 and φr = 0.9. The
steady state inflation rate is 0.5 percent quarterly. Firm productivity levels are equidistant
in logs; from each point, only neighboring points can be reached, the transition probability
is symmetric. The correlation of the technology shock is 0.95, that of the monetary shock
is zero. The cost function for price adjustment is tent-shaped, with support [0, 2 Eκ], and
Eκ is calibrated so as to give a frequency of price adjustment of 1/3 per quarter.

A.6 Choice of grid

np = 501 grid points are used in p, and nP = 9 grid points in productivity.

• The aggregate grid has np ·nP points. However, the ergodic set will be much smaller
than that. To compute the solution of the discretized model, we only have to consider
the φt(j, i) and Vt(j

′, i′) on the ergodic set.

• The grid p̄j is defined relative to the aggregate price level. Therefore, the price p̄j at
time t+ 1 stands for the price p̄j at time t, multiplied by the inflation rate Pt+1/Pt.

• The grid points p̄j have to be chosen such that the distance between grid points is
not a multiple of the steady state inflation rate. This makes that a firm that does
not change its price will end up next period between two grid points. In this way,
it is guaranteed that the the solution with (infinitesimally small) aggregate shocks
stays on the ergodic set.
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B Asymptotic Estimation of Reduced Model

B.1 Estimation Formula

Assume the true model is
xt = Axt−1 +Bεt (108)

where the ε is a vector of i.i.d. shocks. We think of x as being a high-dimensional state
vector, and want to estimate a VAR in a lower-dimensional vector of statistics x̂, which is
related to x by

x̂t = Hxt (109)

with known matrix H . The estimated model is

x̂t = Âx̂t−1 + B̂εt + ut (110)

The error term ut is supposed to capture the aggregation error. The normal equations for
the OLS estimation of this model are

1

T

T
∑

i=1

x̂t

[

x̂′t−1 ε′t
]

=
1

T

T
∑

i=1

[

Â B̂
]

[

x̂t−1

εt

]

[

x̂′t−1 ε′t
]

(111)

Using (109) and (108) we can write (111) as

1

T

T
∑

i=1

H(Axt−1 +Bεt)
[

x′t−1H
′ ε′t

]

=
1

T

T
∑

i=1

[

Â B̂
]

[

Hxt−1

εt

]

[

x′t−1H
′ ε′t

]

(112)

In the limit T → ∞, the means converge to their unconditional expectations, and we get

[

HAL (A,B,Σε)H
′ HBΣε

]

=
[

Â B̂
]

[

HL (A,B,Σε)H
′ 0

0 Σε

]

(113)

which gives (33).

B.2 Stability of Reduced Model

Define the spectral radius of a square matrix X by % (X).

Lemma 2. If % (A) < 1 and
Σ = AΣA′ +BB′ (114)

for some matrix B 6= 0, then %
(

HAΣH ′ [HΣH ′]−1
)

< 1 for any H such that HΣH ′ is
regular.
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Proof. Assume first that Σ has full rank. Because it is positive definite, it can be written
as Σ = SS ′ with S regular. Define Q = S−1. From (114) we get

I = QΣQ′ = QAQ−1QΣQ′(Q′)−1A′Q′ +QBB′Q′ = ÃÃ′ + B̃B̃′ (115)

where Ã ≡ QAQ−1 and B̃ ≡ QB. It follows from (115) that ‖Ã‖2 < 1. [For any x with
x′x = 1, we get x′Ix = 1 = x′ÃÃ′x+x′B̃B̃′x, therefore x′ÃÃ′x < 1 and therefore ‖Ã′‖2

2 < 1

and ‖Ã′‖2 < 1]. Define Â ≡ HAΣH ′ [HΣH ′]−1. Then Â = H̃ÃH̃ ′
[

H̃H̃ ′
]−1

where H̃ ≡

HS. Then Âk = H̃

(

Ãk−1H̃ ′
[

H̃H̃ ′
]−1

H̃

)k−1

ÃH̃ ′
[

H̃H̃ ′
]−1

. Since H̃ ′
[

H̃H̃ ′
]−1

H̃ is an

orthogonal projection, ‖H̃ ′
[

H̃H̃ ′
]−1

H̃‖2 = 1. Then ‖Âk‖2 ≤ ‖H̃‖2‖Ã‖
k
2‖H̃

′
[

H̃H̃ ′
]−1

‖2.

Then (using Gelfand’s formula of the spectral radius)

%
(

Â
)

= lim
k→∞

(

‖Âk‖2

)1/k

≤ lim
k→∞

(

‖H̃‖2‖Ã‖
k
2‖H̃

′
[

H̃H̃ ′
]−1

‖2

)1/k

= ‖Ã‖2 < 1 (116)

If Σ is singular, for any ε > 0 there is a regular Σ̃ with ‖Σ̃ −Σ‖2 < ε, for which the above
argument applies. Then ε can be chosen such that HΣ̃H ′ is regular. The claim then follows
from the continuity of the spectral radius.

B.3 Solving Discrete-Time Lyapunov Equations

Taking as given the asymptotically stable n × n-matrix A and the n × m-matrix B, we
want to compute R, defined as the unique solution of the Lyapunov equation

R = ARA′ +BB′ (117)

If n is not too large, there are several ways of computing R. A simple and robust one is
the squared Smith iteration (Benner, Quintana-Ort, and Quintana-Ort 2002), also called
“doubling algorithm”:

• Set R := BB′.

• Repeat m times the following:

R := R + ARA′

A := A2;

After m steps, R has the same value as obtained from the simple scheme Rj+1 := ARjA
′+

BB′ after 2m iterations. If R is a variance, this would be the variance of the process after
2m periods, if it was started from a constant value. This algorithm is implemented in the
Matlab file doubling.m. Numerically even more robust, but computationally more costly
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is to compute the Cholesky factor of R. There is a version of the doubling algorithm that
does this (Benner, Quintana-Ort, and Quintana-Ort 2002), implemented in the Matlab file
doubling chol.m.

On a PC, this works well as long as n is not much bigger than, say, 1000. For larger n,
we can still compute a precise approximation to R if the numerical rank of R is not too
large. If R has rank k, it can be written as

R = USU ′, U ′U = I (118)

for some symmetric k × k-matrix S. From (117) we get

S = U ′RU = ÂSÂ′ + UBB′U ′ (119)

with Â ≡ U ′AU . Then (119) can be solved, for example, by the doubling method described
above. It remains to find such an U . Define

R(N) =
[

B AB A2B . . . AN−1B
]

(120)

Then R = limN→∞R(N)R(N)′. We therefore want U to span the column space of R(N)
for sufficiently large N . This is done by the following algorithm, which is implemented in
the Matlab file “gramianspace.m”.

1. Set h := B and R := h.

2. For i = 1, . . . , N , do the following. Set

h := Ah

R :=
[

R h
]

What is crucial is that we store R not in its original form, because R would grow pro-
hibitively large for largeN , but rather we maintain and update the QR-decomposition
R = qr where q is orthogonal and r is upper triangular. Updating this decomposition
when a new column is added is straightforward, because the QR-decomposition of
a matrix can be computed by householder reflections on each column of the matrix
(Golub and Van Loan 1983, Section 5.2). What is important is that we update q
and r only if the new column is not spanned, up to some specified precision, by the
earlier columns. In that way, the size of q and r does not grow beyond the numerical
rank of R.

3. Compute the SVD r = uσv′ and set U = qu. Since both q and u are orthogonal, so
is U .

If rank (R) = k, the matrix U obtained is of size n × k. Then we get the k × k-matrix
S from (119). Notice that, in general, we cannot compute R = USU ′, because it has
dimension n × n and might not fit into the computer memory. But we can compute, for
any H not having too many rows, HRH ′ as (HU)S(U ′H)′.
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B.4 Tikhonov regularization

When H has many columns (reduced model with many state variables), the matrix HΣxH
′

may be seriously ill-conditioned. This is similar to a multi-collinearity problem in a re-
gression problem of the form Y = Xβ + u. A common approach to solve this problem is
Tikhonov regularization (called “ridge regression” in econometrics). The idea is to add a
small positive constant ε on the diagonal of X ′X. The identification problem is then solved
(artificially). Estimates are biased towards zero, but have a smaller RMSE for sufficiently
small ε (Hoerl and Kennard 1970).

I prefer to work directly on the singular values of X (rather than the eigenvalues of
X ′X). To do this, calculate the SVD of X as USV ′ = X. Then replace diagonal element
σk in S by max(σk, εσ1) for some small ε (I have used ε = 1e − 14). Call the resulting
matrix S̃. Then compute β = V S̃−1U ′Y . To apply this to the OLS problem in Section B.1,
set X = (HL−1/2)′ and Y = (HAL−1/2)′, where L1/2 is a square root of HΣxH

′.

C Almost-exact aggregation

C.1 Proof of Proposition 1)

The discussion before Proposition 1) has already shown that the stable solution of (52)
gives a stable solution of (62) with x̂t = Hxt. It remains to be shown that (62) has no
other stable solution.

Choose an (n − k) × n-matrix H̃ such that HH̃ ′ = 0, and

[

H

H̃

]

is regular. Since H

satisfies (32) by construction, such a matrix can always be found. Then

[

H

H̃

]

[

H ′ H̃ ′
]

= I (121)

Next we show that H̃T H̃ ′ is asymptotically stable. Define

T ∗ ≡

[

H

H̃

]

T
[

H ′ H̃ ′
]

=

[

T̂ 0

H̃TH ′ H̃T H̃ ′

]

(122)

From (121) it follows that (122) is a similarity transformation, so that T ∗ has the same
eigenvalues as T . Since T ∗ is block-triangular, it follows that the eigenvalues of H̃T H̃ ′ are
eigenvalues of T ∗, and therefore of T . This shows that H̃T H̃ ′ is asymptotically stable.

Take any stable solution (x̂t, dt) of (62). Define x̃t = H̃xt. Premultiplying (52a) by H̃
we get

x̃t = H̃T H̃ ′x̃t−1 + H̃TH ′x̂t−1 + H̃Ddt + H̃F εt (123)

This together with the stability of H̃T H̃ ′ shows that x̃t is stable. From (121), one can
recover xt from x̂t and x̃t by xt = H ′x̂t + H̃ ′x̃t. The stability of x̂ and of x̃ then implies
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the stability of xt. Furthermore, (xt, dt) satisfies (52), because it satisfies (123) and (62),

and

[

H

H̃

]

has full rank.

Therefore, every stable solution x̂ of (62) generates a (different) stable solution of (52).
Since the latter system has a unique stable solution by assumption, so does (62).

C.2 The Numerical Rank of the Observability Matrix

To understand better the conditions for almost-exact aggregation, consider the special case
where C has only one row, and where the matrix T has distinct eigenvalues, so that it can
be diagonalized and written as

T = GΛG−1 (124)

Here G is the matrix of eigenvectors of T and Λ is the diagonal matrix holdings the
eigenvalues λi. Then the observability matrix is given by

Q =









CGΛ0G−1

CGΛ1G−1

. . .
CGΛn−1G−1









=









CG
CGΛ
. . .

CGΛn−1









G−1 (125)

Since G−1 has full rank, the rank of Q equals the rank of

Q̃ =









CG
CGΛ
. . .

CGΛn−1









=















c̃1 c̃2 . . . c̃n−1 c̃n
c̃1λ1 c̃2λ2 . . . c̃n−1λn−1 c̃nλn

c̃1λ
2
1 c̃2λ

2
2 . . . c̃n−1λ

2
n−1 c̃nλ

2
n

...
...

. . .
...

...
c̃1λ

n−1
1 c̃2λ

n−1
2 . . . c̃n−1λ

n−1
n−1 c̃nλ

n−1
n















(126)

where c̃i is the i-the element of the column vector CG. Since the λi are distinct by
assumption, the columns of the matrix















1 1 . . . 1 1
λ1 λ2 . . . λn−1 λn

λ2
1 λ2

2 . . . λ2
n−1 λ2

n
...

...
. . .

...
...

λn−1
1 λn−1

2 . . . λn−1
n−1 λn−1

n















(127)

are independent. Then (126) has as many independent columns as there are non-zero
elements c̃i. The Popov-Belevitch-Hautus test of Section 4.5 is a consequence of this.

From those considerations, there are at least two reasons why the numerical rank of
Q may be smaller than n. First, two elements λi and λi+1 may be equal up to machine
precision. And second, if an λi is sufficiently smaller in absolute value than λ1, then the
powers λk

i become insignificant for high enough k. For example, assume that λi ≤ 0.5λ1.
Then λk

i ≤ 10−16λk
1 for all k > 53. That means that from the 55-th row of Q onwards,

the entries in columns i and higher are numerically negligible compared to the entry in the
first column.
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Figure 1: Impulse response functions for K, stochastic growth model, nP = 1
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Figure 2: log10 of approximation errors in K, stochastic growth model with model reduc-
tion, nP = 1

44



10
0

10
1

−15

−10

−5

0

Number of statistics

Infinite horizon forecast error, stdev.

10
0

10
1

−20

−15

−10

−5

0
Relative error impulse response Z

10
0

10
1

−15

−10

−5

0
Relative error impulse response R

10
0

10
1

−7

−6

−5

−4

−3

−2

−1

0
Maximum relative error transition

Number of statistics

 

 

CEA
PCA
BalReduc
Moments

Figure 3: log10 of approximation errors in R, state-dependent pricing model with model
reduction
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Figure 4: log10 of approximation errors in K, OLG model with model reduction
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Figure 5: log10 of approximation errors in K, stochastic growth model with approximate
aggregation
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Figure 6: Popov-Belevitch-Hautus test for exact aggregation, growth model, nP = 1
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