
Computational Methods, BGSE 2020 – Michael Reiter – Ch. 3: Introd. dynamic programming 1

3 Introduction to dynamic programming

References:

• Ljungqvist and Sargent (2000), Chapters 2 and 3: introductory

• Acemoglu (2009), Chapters 6 and 16: theory

• Stokey and Lucas (1989), Chapters 4 and 9: theoretical

• Judd (1998), Chapter 12: numerics

3.1 Abstract example: discrete finite-horizon problem

Consider the problem

min
a0,...,aT

E

T∑
t=0

βtC(xt, at, t) + βT+1Q(xT+1) (1)

where

xt ∈ X =
{
X1, X2, . . . , Xn

}
(2)

at ∈ A =
{
A1, A2, . . . , Am

}
(3)

and the dynamic transition law is given by

xt+1 = Xi with probability pi(xt, at, t), i = 1, . . . , n (4)

Here pi(x, a, t) is the conditional probability that the system will be in state xi at t+ 1 if we start at
t from xt and apply the policy at.

The policy at time t, at, can depend only on information available at time t. This information
comprises the values of the variables up to time t. In the current example, all the information we
need to compute the optimal at is xt. So at will be a function of xt.

We solve the problem recursively by use of Bellman’s value function v(x):

1. We start the recursion by

vT+1(X
i) = Q(Xi), i = 1, . . . , n (5)

Store these values in a vector vT+1.

2. Given a vector vt+1, we calculate vt(x), for each x ∈ X , recursively by the Bellman equation

vt(X
i) = min

a∈A

C(Xi, a, t) + β
n∑

j=1

pj(X
i, a, t)vt+1(X

j)

 , i = 1, . . . , n (6)
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The last term in (6) is the expectation of vt+1(xt+1), condition on information at time t.

To obtain the minimum, we calculate the rhs of (6) for each a ∈ A, and take the minimum of
these values.

We store the values in the vector vt.

3. We iterate until we have obtained the vector v0.

3.2 Infinite horizon

We now change the objective to

min
a0,a1,...

E
∞∑
t=0

βtC(xt, at) (7)

Note that the cost function now has to be time-independent. We have to assume the same for the
transition probabilities pi(x, a).

We solve the problem by the same iterative algorithm, but repeat step 2 until convergence is achieved.
For this to make sense, we first have to show that the iterations will actually converge.

It is useful to express step 2 of the algorithm by the operator T on the space of value vectors. The
i-th component of T (v) is defined as

T (v)i = min
a∈A

C(Xi, a) + β

n∑
j=1

pj(X
i, a)v(Xj)

 (8)

Therefore vt+1 = T (vt). The solution to the infinite horizon problem v∗ is a fixed point of T , which
means T (v∗) = v∗.

This operator is a contraction with modulus β, which means

‖v − w‖∞ ≤M =⇒ ‖T (v)− T (w)‖∞ ≤ βM (9)

where ‖.‖∞ is the supremum norm.

Proof:

Assume ‖v − w‖∞ ≤M and
T (w)j − T (v)j > βM (10)

for some j. We will show that this cannot be the case.

Denote by âj the action that is taken at Xj with value function v. This means T (v)j = C(Xj , âj) +
β
∑

i pi(X
j , âj)v(Xi). With value function w one could chose the same action and obtain a value

C(Xj , âj) + β
∑

i pi(X
j , âj)w(Xi).

Since the pi are positive and sum up to 1, we have∣∣∣∣∣∑
i

pi(X
j , âj)(v(Xi)− w(Xi))

∣∣∣∣∣ ≤∑
i

pi(X
j , âj)

∣∣v(Xi)− w(Xi)
∣∣ ≤∑

i

pi(X
j , âj)M ≤M (11)



Computational Methods, BGSE 2020 – Michael Reiter – Ch. 3: Introd. dynamic programming 3

But then
T (w)j ≤ C(Xj , âj) + β

∑
i

pi(X
j , âj)w(Xi) ≤ T (v)j + βM (12)

so that (10) is wrong. Q.E.D.

Then the contraction mapping theorem (Stokey and Lucas 1989, p.50) tells us that the operator T
has a unique fixed point (the solution of the Bellman equation), to which the iterations converge.

Moreover, at each stage k of the iteration, we can give an upper bound for the deviation of the value
function solution v∗ from the estimate vk.

Define δk = ‖T (vk)− vk‖∞, then

‖v∗ − vk‖∞ = ‖v∗ − T (vk) + T (vk)− vk‖∞ = ‖T (v∗)− T (vk) + T (vk)− vk‖∞ (13)

≤ ‖T (v∗)− T (vk)‖∞ + ‖T (vk)− vk‖∞ ≤ β‖v∗ − vk‖∞ + δk (14)

and therefore

‖v∗ − vk‖∞ ≤
δk

1− β
(15)

3.3 Continuous state space

The problems we have to solve in economics differ from the problems of the last subsections because
both the state and the action space are usually not discrete, but continuous (e.g., a continuous range
of possible levels of capital). Often they are even unbounded.

To apply the Bellman algorithm to these problems, we have to approximate the continuous problem
on a discrete grid. This involves the following issues:

• Interpolating the value of v(x) at points of x not in the grid; cf. Section 1.4.

• In case of an unbounded state space, approximating the problem on a bounded subset.

• Computing the expectations numerically.

• Finding the optimal action (step 2 above) for each x ∈ X in each iteration by numerical
techniques.

We now modify the problem of Section 1.2 by assuming that both x and a are continuous variable,
but we still approximate the value function on the finite grid X . Our problem now is to minimize
(7) s.t.

xt+1 = T (xt, at, zt+1) (16)

where zt is some exogenous i.i.d. process. Both the state xt and the control at are continuous
variables. The Bellman equation is

vt(x) = min
a
{C(x, a) + β Et vt+1(T (x, a, zt+1))} (17)
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Example: Growth with stochastic discount factor

We maximize

E
∞∑
t=0

u(ct) (18)

s.t.
Kt+1 = f(Kt)− δt+1Kt − ct (19)

where δt is an exogenous stochastic (i.i.d.) discount factor. We assume that f ′(K)→∞ as K → 0,
so it is not necessary to impose any lower bounds on K.

The outline of the solution algorithm is the following:

1. Compute the steady state value of K∗.

2. Choose some range of approximation, for example K ∈ (0.5K∗, 1.5K∗).

3. Choose a set of n grid points K = {K1,K2, . . . ,Kn} from this range, for example equidistant
points, or points equidistant in logs.

4. Our aim is to find the n-vector v that gives the value function at each grid point. We initialize
by v0 = 0.

5. Given the estimate vk (step k in our iteration), we find vk+1 by solving (note that the k goes
backward in time)

vk+1
i = max

c

{
u(c) + β

∫
ṽk (f(Ki)− δKi − c) dF (δ)

}
, i = 1, . . . , n (20)

where F (δ) is the probability distribution of δ, and ṽk(K) is the interpolation of the vector vk

between grid points, as explained in Section 1.4.

The optimization in (20) uses a numerical method like fmin. [If the problem is convex, as it is
here, we can alternatively solve the first order condition to find c.]

6. Iterate the last step until the changes in v become negligible.

3.4 Interpolation

For concreteness, we now assume that z follows a discrete distribution and take on nz different values
z1, z2, . . . , znz , with probabilities p1, p2, . . . , pnz , such that

pj ≥ 0 (21)
nz∑
j=1

pj = 1 (22)
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Then the expectation in (17) takes the form1

Et [v (T (x, a, zt+1))] =
∑
j

pjv(T (x, a, Zj)) (23)

The problem is that T (x, a, Zj) will generally not be part of the grid X . To approximate the value
v(x) for x not in X , we will choose an interpolation formula

v(x) =
∑
i

qi(x)v(xi), qi ≥ 0,
∑
i

qi = 1 (24)

where the xi are elements of X . The qi(x) will be determined below (and most of them will be zero!).

Defining qji ≡ qi(T (x, a, Zj)), the expectation then becomes

Et [v (f(x, a, zt+1))] =
∑
j

pj(x, a)
∑
i

qji v(xi) =
∑
i

p∗i (x, a)v(xi) (25)

where
p∗i (x, a) =

∑
j

pj(x, a)qji (26)

One can easily show that if, for each xj , the qji have the formal properties of a probability (qji ≥ 0

and
∑

i q
j
i = 1), then the p∗i are formally also probabilities. And this implies that the contraction

property of the value iteration also holds when we use this interpolation (the proof is unchanged).

With the interpolation, reaching point x with certainty is equivalent to reaching the points xi ∈
X with probabilities p∗i (x, a). The Bellman equation with this interpolation scheme is formally
equivalent to the Bellman equation of a stochastic model on a finite grid, and all the convergence
properties for this model carry over to our model with the interpolation.

Two interpolation schemes of the form (24) are

• piecewise linear interpolation on simplices (in 2 dimensions: triangles)

• multilinear interpolation

cf. Judd (1998, p.240-244).

The downside of these interpolation schemes is that linear interpolation of the value function usually
leads to low accuracy, or put another way, we need a lot of grid points to reach a certain level of ac-
curacy. We might therefore want to use nonlinear interpolation schemes such as polynomials or cubic
splines. (Rather than interpolation, we could also use least squares fitting of polynomials or splines
to the functions vk, in each of the iterations). They might in practice give better approximations in
most applications, but we cannot prove convergence of the algorithm. In some examples, dynamic
programming with cubic spline interpolation really becomes unstable, cf. Judd (1998, p.438).

1If z is a continuous variable, we will always approximate the expectation by a “quadrature formula” that amounts
to approximate the variable by a discrete distribution zj such that (21) holds.
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Piecewise linear interpolation

Assume the function v(x) is observed at the points x ∈ X =
{
X1, X2, . . . , Xn

}
, where Xi > Xi−1

for i = 2, 3, . . . , n.

Piecewise linear interpolation in one dimension means that

v(x) =

(
1− x−Xi

Xi+1 −Xi

)
v(Xi) +

x−Xi

Xi+1 −Xi
v(Xi+1) (27)

where Xj ≤ x ≤ Xj+1. Notice that (??) is of the form (24), with qj =
(

1− x−Xi

Xi+1−Xi

)
, qj+1 =

x−Xi

Xi+1−Xi and qi = 0 for i 6= j, j + 1.

Advantages:

• Satisfies (24), so that stochastic interpretation is possible. Convergence guaranteed.

• If v(x) are generated by convex (concave) function, interpolated function is also convex (con-
cave). Notice: this holds for one-dimensional piecewise-linear interpolation, not in higher
dimensions.

Disadvantages:

• Low accuracy in many cases.

• Interpolant not differentiable.

Multilinear interpolation

Assume the function v(x, y) is observed at the Cartesian product of the grids {x̄1, x̄2, . . . , x̄n} and
{ȳ1, ȳ2, . . . , ȳm}. where x̄i > x̄i−1 for i = 2, 3, . . . , n and ȳi > ȳi−1 for i = 2, 3, . . . ,m.

Multilinear interpolation means that

v(x, y) =

(
1− x− x̄i

x̄i+1 − x̄i

)(
1− y − ȳj

ȳj+1 − ȳi

)
v(x̄i, ȳj)

=
x− x̄i
x̄i+1 − x̄i

(
1− y − ȳj

ȳj+1 − ȳi

)
v(x̄i+1, ȳj)

=

(
1− x− x̄i

x̄i+1 − x̄i

)
y − ȳj
ȳj+1 − ȳi

v(x̄i, ȳj+1)

=
x− x̄i
x̄i+1 − x̄i

y − ȳj
ȳj+1 − ȳi

v(x̄i+1, ȳj+1) (28)

where x̄i ≤ x ≤ x̄i+1. and ȳj ≤ y ≤ ȳj+1.



Computational Methods, BGSE 2020 – Michael Reiter – Ch. 3: Introd. dynamic programming 7

Notice that the coefficients multiplying the v(x, y) in (27) are non-negative and sum to unity. There-
fore, if X is the Cartesian grid of (27) is again of the form (24), where now 4 of the indices qi are
non-zero.

The list of advantages and disadvantages of multilinear interpolation is similar to that of piecewise
linear, but now, even if the v(x̄i, ȳj are generated by a convex function, the interpolated function is
not necessarily convex!

Higher-order polynomial interpolation

Options for interpolation in one dimension:

• Interpolation with high-dimensional polynomials: interpolated the n data points v(x̄1), v(x̄2), . . . , v(x̄n)
by a polynomial of order n (degree n-1).

• Least-squares regression: approximate the function given by the n data points v(x̄1), v(x̄2), . . . , v(x̄n)
by a polynomial of order m < n. Fit the function by least squares. Notice that the approximate
function in general does not go through the data points

• Piecewise polynomial interpolation: splines.

Example: cubic spline interpolation: between nodes, interpolant is cubic (degree 3) polyono-
mial. Interplation is twice differentiable at nodes.

Interpolation in more dimensions:

• Polynomials can be generalized to higher dimensions by tensor productions of one-dimensional
polynomials, or by complete polynomials.

• Splines are generalized to higher dimensions by tensor B-splines.

Example: Second-order approximations

Let us approximate the value function v(x) as

v(x) = a+ bx+ cx2 (29)

based on the grid X = {−1, 0, 1}. Then we get

v(−1) = a− b+ c (30a)

v(0) = a (30b)

v(1) = a+ b+ c (30c)

From this we get

a = v(0) (31a)

b =
v(1)− v(−1)

2
(31b)

c =
v(1) + v(−1)

2
− v(0) (31c)
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Then (29) becomes

v(x) = v(0) +
v(1)− v(−1)

2
x+

(
v(1) + v(−1)

2
− v(0)

)
x2 (32)

This can be rewritten as

v(x) =
x2 − x

2
v(−1) + (1− x2)v(0) +

x+ x2

2
v(1) (33)

Properties of the approximation (32):

• For given data v(−1), v(0) and v(1), (32) is nonlinear (quadratic) in x; this can be seen from
(32).

• The approximation v(x) for a given x depends linearly on the data v(−1), v(0) and v(1); this
can be seen from (33).

The coefficients for v(−1), v(0) and v(1) are x2−x
2 , (1 − x2) and x+x2

2 , respectively. These
coefficients sum to 1 for any x, but they cannot be interpreted as probabilities, because they
can be negative. (For example, x2−x

2 < 0 for < x < 1.)

Consequence: unlike piecewise linear interpolation, quadratic interpolation cannot be given a
stochastic interpretation. Interpolating the value function by (33) is not equivalent to specifying
a transition law such that v(−1), v(0) and v(1) are reached with certaint probabilies.

From this example, we can draw the following conclusions for higher-order polynomial approxima-
tions:

Disadvantages:

• No stochastic interpretation possible, therefore the convergence of value function iterated is not
guaranteed.

• Iteration in policy space breaks down: matrix in general not invertible.

Advantage: if the algorithm converges, it probably achieves higher accuracy than the linear interpo-
lation algorithms.

3.5 Concavity

For concave maximization problems such as the growth model with concave utility, one can show
that the value function is also concave in each step of the Bellman iteration. For precise conditions,
see Stokey and Lucas (1989, Theorems 4.8 and 9.8).

It is important to note that the good theoretical properties of dynamic programming (such as the
contraction property) do not depend on concavity. However, in the nonconvex case with continuous
policy variable, one must be very careful to find the global minimum in (17).
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3.6 Iteration in policy space

With infinite horizon problems, we often get the solution more quickly by iterating not in value space,
but in policy space.

1. Start with a guess of the value function v0(x), e.g. v0(x) = 0, for all x ∈ X .

2. Given vk(x), compute ak+1(x), for each x ∈ X , as the value a that minimizes C(x, a) +
β
∑

i pi(x, a)vk(xi).

3. Compute vk+1(x) by solving

vk+1(x) = C(x, ak+1(x)) +
∑
i

pi(x, a
k+1(x))vk+1(xi) (34)

4. Iterate steps 2 and 3 until convergence is achieved.

Remarks:

• vk(x) is the utility one achieves by starting from state x and following in all periods the policy
ak.

• In vector-matrix notation, equation (34) can be written

vk+1 = c(ak+1) + βΠ(ak+1)vk+1 (35)

or equivalently (
I − βΠ(ak+1)

)
vk+1 = c(ak+1) (36)

This is a system of linear equations and can be solved by the methods that we have discussed.
Note that the matrix

(
I − βΠ(ak+1)

)
– is diagonally-dominant. This implies that Gauss-Jacobi and Gauss-Seidel methods con-

verge.

– is often sparse, which can be exploited in several ways. The matrix can be stored as
a sparse matrix, and the system of equations can be solved either by Gauss-Jacobi or
Gauss-Seidel, or more complicated and often more efficient methods such as GMRES (see
Matlab’s “help sparse”).

• It is not necessary (and usually not efficient) to solve the system (36) accuractely in each
iteration. We can rather alternate one optimization step (find new a′s) with some (10-50, say)
Gauss-Seidel steps on (36).

• One often needs only few iterations in policy space. Therefore the costly step of computing
new a’s need to be done only a few times.
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Convergence

If we abbreviate the matrix βΠ(a) by R(a), the definition of vk implies that

vk = R(ak)vk + c(ak)

for each policy iteration k. Iterative substitution leads to

vk = Rm(ak)vk +
m−1∑
i=0

Ri(ak)c(ak)

For m → ∞, the first term on the right hand side goes to zero because of the contraction property,
and we get

vk =
∞∑
i=0

Ri(ak)c(ak)

Proceeding to policy iteration k + 1, we have

vk = R(ak)vk + c(ak)

= R(ak+1)vk + c(ak+1) + γ

for some vector γ ≥ 0, since, by definition, ak+1 minimizes R(a)vk + c(a) over a. Iterating again, we
obtain

vk =

∞∑
i=0

Ri(ak+1)
(
c(ak+1) + γ

)
= vk+1 +

∞∑
i=0

Ri(ak+1)γ

Since R contains only non-negative elements, we get

vk ≥ vk+1 (37)

The value function is monotonically decreasing in each iteration, and since it is bounded from below,
it must converge.

Again, the convergence of the algorithm is not disturbed by the interpolation if we use an interpolation
scheme with positive qi.

3.7 Curse of dimensionality

The problem of dynamic programming on discrete grids is that the computational effort grows ex-
ponentially with the dimension of the state vector. Assume that we need a grid of 100 points in
a one-dimensional problem to reach a certain level of accuracy. Then we need approximately 1002

grid points in a two-dimensional problem, 1003 grid points in a three-dimensional problem, etc. This
means that the problem becomes untractable even with a moderate number of dimensions.
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It may be possible to avoid this problem by exploiting the smoothness of typical economic examples
(all relevant functions smooth, or even convex). Then one can approximate the value function by
complete polynomials (Judd 1998, Section 12.7). However, the convergence of the DP algorithm with
nonlinear approximations of the value function cannot be proven, cf. Section 1.4

3.8 The stationary state of a heterogeneous agent model

The Bellman equation in matrix form

Assume a dynammic programming problem with one endogenous state, taking values x ∈ {x̄1, x̄2, . . . , x̄nx},
and one exogenous state, taking values z ∈ {z̄1, z̄2, . . . , z̄nz}. We assume z follows a finite-state
Markov process with transition matrix Π, that means, Πi,j denotes the probability of switching from
state z̄i to state z̄j . The choice variable is next period’s endogenous state. The Bellman equation is
then given by

v (x̄i, z̄j) = max
k

{
u (x̄i, x̄k, z̄j) + β

nz∑
l

[Πj,lv (x̄k, z̄l)]

}
(38)

If we define the end-of-period value function

ṽ (x̄k, z̄j) =
∑
l

[Πj,lv (x̄k, z̄l)] (39)

as the conditional expectation of the continuation value, we can write the Bellman equation as

v (x̄i, z̄j) = max
k
{u (x̄i, x̄k, z̄j) + βṽ (x̄k, z̄j)} (40)

Let us define as X(i, j) the optimal decision at state (i, j), V as the nx × nz-matrix of values, Ṽ
as the nx × nz-matrix of end-of-period values, and U as the nx × nz-matrix of utilities such that
Ui,j = u

(
x̄i, x̄X(i,j), z̄j

)
. Let Vj denote column j of V , the values belonging to exogenous state z̄j ,

and by Uj column j of U . Let Ψ(j) denote the transition matrix for the endogenous choices at the
exogenous grid point z̄j . This means, element Ψ(j)i,k = 1 if k = X(i, j), and Ψ(j)i,k = 0 for all other
k.

Then for each exogenous state z̄j , the Bellman equation with optimal decisions can be written in
matrix form as

Vj = Uj + βΨ(j)Ṽ = Uj + βΨ(j)
(
ṼΠ′

)
(41)

Cross-sectional distributions

Assume a continuum of economic agents of unit mass, where each economic agent can be in one of
n states. Let pi denote the fraction of agents in state i, for i = 1, . . . , n. Assume that Π denotes the
transition matrix, such that Πi,j is the probability of going from state i to state j.
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Write pi,t as the fraction in state i at time t. The dynamics of the distribution is given by

pi,t =
n∑

j=1

Πj,ipj,t−1 (42)

In matrix notation, this can written (just remember the definition of a matrix multiplication)

pt = Π′pt−1 (43)

Notice that we need the transpose of Π for the dynamics of the distribution (backward looking),
while we need Π in the Bellman equation (forward looking). The rows of Π sum to 1, while the
columns of Π′ sum to 1.

The invariant distribution satisfies
p∗ = Π′p∗ (44)

In mathematical terms, it is the eigenvector of Π′ belonging to the eigenvalue of 1. (This is what the
matlab routine invdistr.m computes.) Since Π is a transition probability matrix, Π and Π′ have a unit
eigenvalue. The invariant distribution is unique if the transition matrix follows a mixing condition:
for any states i and j, there is a positive probability that the agent can reach state j from state i at
some time in the future.

The cross-sectional distribution with 2 states

Let us now look at an economy where each agent follows the dynamic problem described above, with
one endogenous and one exogenous state. Denote by p̃(i, j) the fraction of agents being in state
(x̄i, z̄j). Obviously,

∑nx
i=1

∑nz
j=1 p̃(i, j) = 1.

Let us stack all the p(i, j) into one nx · nz-vector p, such that

p =



p1,1
p2,1

...
pnx,1
p1,2

...
pnx,2

...
p1,nz

...
pnx,nz



(45)

The first nx elements of p denote the fraction of agents with different endogenous state x, but all
having z = z̄1. The next nx elements of p denote the fraction of agents all having z = z̄2, etc.
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We can decompose the transition of the whole system in two steps: the endogenous transition, and
the exogenous transition.

TEndog =


Ψ(1)′ 0 0 · · · 0

0 Ψ(2)′ 0 · · · 0
...

...
...

...
...

0 0 0 · · · Ψ(nz)
′

 (46)

Here, agents do not change z.

The exogenous part is given by

TExog =

 Π1,1Inx Π2,1Inx . . . Πnz ,1Inx

...
...

...
...

Π1,nzInx Π2,nzInx . . . Πnz ,nzInx

 = kron(Π′, Inx) (47)

where Inx denotes the nx-dimensional identity matrix. In the exogenous part, agents do not change
x. Remember that Π is the exogenous transition probability matrix.

The combination of endogenous transition first and exogenous transition second is then given by the
matrix product

T = Texog · Tendog (48)

This is what the matlab routine transmat computes. It then computes the stationary distribution
by calling the matlab routine invdistr.m.

General equilibrium: solving for the interest rate

The agent’s problem is solved taking prices as given. Simplest example: the household consumption-
saving problem with exogenous changes in productivity. The heterogeneous agent model assumes
that prices (here interest rate and wages) are compatible with firm behavior,

Assume that the aggregate production function is known. The we solve for the interest rate as follows
(done in program ”ha1.m”).

1. Guess the interest rate.

2. Compute the capital/labor ratio that is compatible with the interest rate. From that we
compute the competitive wage.

3. Solve the household problem for given interest rate and wage.

4. Compute the invariant distribution p∗ of capital and productivity. p∗ is an nx · nx-vector.

Arrange p∗ as an nx×nx-matrix, where the rows refer to capital levels, columsn to productivity
levels. Call this Matrix P .



Computational Methods, BGSE 2020 – Michael Reiter – Ch. 3: Introd. dynamic programming 14

5. Compute the aggregate capital stock:

K =

nz∑
j=1

nx∑
i=1

k̄iPi,j (49)

This is what the Matlab command

K = sum(Sol.gridEndog’ * invD);

is doing.

6. Normalizing labor to L = 1, use K to compute an update of the interest rate, call it r̂.

7. Use fzero to find the level of r such that r̂ = r.
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