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1 Introduction

Shimer (2005) and Costain and Reiter (2003) have documented that the standard labor

market matching model has problems in explaining the fluctuations of unemployment and

vacancies. The purpose of this paper is to investigate whether these problems can be

solved by adopting a somewhat different specification of technical progress. Standard

RBC models, including the basic versions of the Mortensen/Pissarides model, assume

that changes in aggregate productivity affect equally all firms and production processes.

An alternative view with long tradition is that technical progress is embodied in new

investment goods, and that only the new capital vintages enjoy the increase in productivity.

In this paper I investigate the hypothesis that technical change is embodied, at least

partially, in the match between a firm and a worker. This means that jobs created in a

boom are more productive than jobs created in recessions, even after the boom is over.

This hypothesis, if it is right, may be related to investment-specific technical change, as

I will discuss in Section 4.4. But technical change embodied in matches may arise for

reasons unrelated to physical investment. A boom can be seen as a time that offers many

opportunities to firms. Many new ideas are around, new products and new markets are

created, and firms strive to be the first in implementing ideas and conquer a share of the

new markets. Even after entering a recession, where new ideas are scarce, the jobs that

were created during good times keep a part of their productivity advantage.

Following most of the labor market matching literature, I will abstract in this paper

from capital in production. To have the most parsimonious representation of embodied

technical change, I assume that there is only one aggregate technology shock, and that

labor productivity takes the following form:

Y (z, zm) = (1 − αz)z + αzzm, 0 ≤ αz ≤ 1 (1)

Here, z is the current level of aggregate productivity, and zm is the level of aggregate

productivity prevailing at the time when the match was formed. The technological spec-

ification in standard RBC models is a special case of (1), where αz = 0. For αz > 0,
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technological change is partially “embodied” in the match.

It is difficult to test the specification (1) directly, because of composition bias in the

workforce over the cycle, effects of changes in the capital stock and other issues. I think

that the evidence reported in Bowlus (1995) provides some support for it. She finds that

jobs that are created in recessions pay lower wages and dissolve more quickly than jobs

created in booms. Moreover, “... the impact on tenure is greater for higher-educated

workers and those employed in professional industries. This evidence suggests the cyclical

phenomenon is one of general mismatching and not of workers taking stopgap jobs during

recessions to get by.” (Bowlus 1995, p.347). Nevertheless, there is at least one alternative

potential explanation of Bowlus’ findings, namely that the reduced labor market tightness

in recessions creates a lower average match quality, as in Barlevy (2002). So far, I am not

aware of any direct evidence on the validity of specification (1).

The aim of this paper is therefore to test (1) in an indirect way, by putting it into a

standard labor market matching model, to see whether its implications for labor market

aggregates and for real wages are supported by the data. A first step in this direction

was done in Costain and Reiter (2003, Section 4.4), and it was found that embodied

technical change can lead to a substantial increase in the variability of unemployment,

therefore bringing the model closer to the data. There are two reasons for this. First, if

technological progress is embodied in job matches, the observed labor productivity, being

an average over the productivity of many past vintages, underestimates the productivity

of new matches, which is what matters for vacancy creation and unemployment variation.

Therefore, a correct calibration of a model with embodied technical change will imply

a higher variability of current productivity. The second, more interesting effect is the

following. If a new match is formed in a boom, the high productivity is partially embodied

in the match, and will persist even if a recession comes. The possibility that a recession

may arrive while the match continues, reduces the outside option of the worker, while

the outside option of the firm is always zero. This tends to increase the fraction of the

product of labor going to the firm, and hence the value of a match to the firm fluctuates

more strongly over the cycle. This creates bigger fluctuations in vacancies, hiring and

3



unemployment.

Costain and Reiter (2003, Section 4.4) identified two problems of using embodied tech-

nical change in a matching model. First, it turned out that this model creates a variability

of wages much higher than what is found in the data. Second, if the embodied part of

technological change is strong enough to explain the data, endogenous separations will

occur. Whenever current aggregate productivity z is higher than the productivity when a

match was created, zm, the match has lower productivity than newly created matches, and

it may be better for the firm and the worker to separate, and have the worker look for a

new job. The evidence reported by Bowlus (1995) indicates that this does in fact happen.

If it happens too often, the model generates dynamics that are clearly at odds with the

aggregate data.

In the current paper, I address those problems using a recently developed version of the

matching model with long-term wage contracts (Rudanko 2005). Those contracts dampen

the fluctuations of wages of ongoing jobs, which helps to reconcile the model with the

existing wage data. I slightly modify the model to allow for endogenous separations. To

deal realistically with endogenous separations, we have to take into account that worker

and firm, after a match has been formed, will probably undertake some match-specific

investment, such as workers’ training. Silva and Toledo (2007) have recently documented

the costs of this type of investment, called “post-match labor turnover costs” (PMLTC),

and investigated the consequences in a labor market matching model. In this paper, we will

see that realistic PMLTC will sufficiently mitigate the problem of endogenous separations

so as to make the model with embodied technical progress successful in matching labor

market fluctuations.

After Costain and Reiter (2003), several other papers have included embodied techno-

logical change into matching models. It is present in Kennan (2005), although Brügemann

(2005) shows that it does not drive the results in that paper. Independently of the present

work, Eyigungor (2006) has developed a similar model with embodied technical change.

In her model, employment relationships require match-specific capital, which assume the

same role as my PMLTC to dampen endogenous fluctuations. Se does not comment on
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the implications of the model for wage dynamics. Hornstein, Krusell, and Violante (2007)

embed labor market frictions into a model where technical progress is embodied in capital

investment. They only analyze steady states.

The plan of the paper is as follows. The model is presented in Section 2. Section 3

derives some analytic results for a linear approximation of the model about the steady

state. Numerical results for the model, calibrated to US data, are presented in Section 4.

Section 5 concludes. Details of the computational procedures are given in an appendix

that can be downloaded from “http://www.econ.upf.es/∼reiter/research.html”.

2 The Model

The economy is populated by a unit mass of workers. Workers order consumption streams

according to the utility function Et

∑

∞

i=0 βiU(ct+i). The concavity of U implies risk aver-

sion, but we assume that workers do not have access to the capital market; they can neither

borrow nor save.1 Therefore, their consumption equals their wage wt while employed, and

the constant b while unemployed. We will refer to b as “unemployment benefits”, but

following most of the matching literature, we effectively treat it like home production.

This means in particular that we do not take into account that b has to be financed by a

government through taxes etc.

A firm is a filled job. It employs one worker and produces output according to the

production function (1). In each period, the firm becomes permanently unproductive with

probability δ. In this case, the match dissolves and the worker becomes unemployed.

Whenever a match separates, either endogenously or exogenously, the vacancy (the firm)

disappears.We assume that firms are owned by risk neutral entrepreneurs, but we effectively

ignore the entrepreneurs in the analysis of the model (they consume profits in every period,

and we do not worry about their consumption being positive or not). The asymmetry

1This assumption, in particular the part that households cannot save, is overly strong and is only

made to keep the contracting problem of workers and firms tractable. Beaudry and Pages (2001) give a

calibration where it is an equilibrium outcome that workers do not save.
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between risk-neutral entrepreneurs and risk averse workers provides an incentive to long-

term wage contracting where firms insure workers against wage fluctuations.

2.1 Matching Technology

The measure of unemployed workers is denoted by U , and the measure of open vacancies

by V . New jobs are created according to the matching function

M = AmUαV 1−α (2)

We define labor market tightness as θ = V
U

. Then we can write the probability of a firm

to fill the vacancy as pF = M
V

= Amθ−α and the probability of a worker to find a job as

pW = M
U

= θpF = Amθ1−α.

2.2 Model With Short-Term Wage Contracts

We first consider a version of the model that is as close as possible to the standard

Mortensen/Pissarides model. We assume that households have linear utility, and that

wages are renegotiated every period. The only new element is the technology specification

(1).

Denote by F (z, zm) the value of a filled job to the firm, and by V (z, zm) the value of a

job to the worker. They are both a function of the current state of productivity z and the

productivity of the time when the match was formed, zm. The value of being unemployed

is denoted by V u(z) and depends only on current technology. The value functions satisfy

V (z, zm) = w(z, zm) + β Ez′ [(1 − δ)V (z′, zm) + δV u(z′)] (3a)

V u(z) = b + β Ez′
[

pW (z)(V (z′, z′) + (1 − pW (z))V u(z′))
]

(3b)

F (z, zm) = Y (z, zm) − w(z, zm) + β(1 − δ) Ez′ F (z′, zm) (3c)

Each period, the wage is set so as to satisfy the Nash bargaining conditions

αF (z, zm) = (1 − α) (V (z, zm) − V u(z)) (4)
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We impose the Hosios condition, saying that the workers’ bargaining share α equals the

elasticity of matches with respect to unemployment in (2). We use in (4) that the outside

option of the firm is always zero. This is because vacancies disappear after a match is

separated, and new vacancies can be freely created such that the following zero profit

condition holds:

κ = pF (z)F (z, z) (5)

In this version of the model, we do not allow for endogenous separation. The firm and

the worker continue the match even if the joint surplus is negative, until they are hit by the

separation shock with probability δ. One can interpret this model as describing the case

of small fluctuations, in which case the surplus is always positive. Endogenous separations

will be handled in the next subsection.

2.3 Model With Long-Term Wage Contracts

We will see in Section 4 that the model with continuous re-bargaining creates excessive

volatility of wages compared to the data. This problem is the more severe the bigger is

the embodied part of technological change. We therefore investigate whether a model with

long-term wage contracts can bring the model in line with the data.

The model I use here is very similar to Rudanko (2005), except for assuming embodied

technical change. We now assume that worker and firm sign a wage contract at the be-

ginning of the employment relationship. A contract that is signed in period t specifies a

sequence of wage payments wt+i(z
t+i), i = 0, 1, . . .. Each wage is conditional on the history

of shocks zt,t+i = (zt, zt+1, . . . , zt+i). No wage payments can be made after the separation

of the match.

Worker and firm choose a contract that is privately efficient (that means, it is impossible

to make both firm and worker better off). The set of efficient contracts can be characterized

by the firm’s expected profit function F (v, z, zm; V u(.)). It is a function of the current state

of technology z, the technology at the time the match was formed, zm, and the expected

value that the firm has promised to the worker, v. We treat v here as a choice parameter
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of the firm; the higher v, the lower will be the profit that the firm can earn from the

employment relationship. The firm’s profit function also depends on the outside option of

the worker in the different states of nature, V u(.). Note that, once firm and worker have

separated, the only relevant state variable is current technology z. The outside option is

therefore a function of z only, V u(z). For notational simplicity, we suppress this argument

and simply write F (v, z, zm).

We now write down the functional equations that characterize the firms’ profit function

under limited commitment. Whenever the value promised to the worker v exceeds her

outside option, the match must be continued, and then the firm’s profit function satisfies

F (v, z, zm) = max
w,V (z′)

{Y (z, zm) − w + β Ez′(1 − δ)F (V (z′, zm) , z′, zm)}

for v > V u(z) (6a)

In the case where the promised value v is not greater than the outside option of the worker

V u(z), the firm is free to endogenously separate the match, which gives V u(z) to the worker

and zero to the firm. This can be the optimal choice if z > zm. Then

F (v, z, zm) = max{ max
w,V (z′)

{Y (z, zm) − w + β Ez′(1 − δ)F (V (z′, zm) , z′, zm)} , 0}

for v <= V u(z) (6b)

The maximizations in (6a) and (6b) are subject to the constraints

v = u(w) + β Ez′ [(1 − δ)V (z′, zm) + δV u(z′)] (6c)

V (z′, zm) ≥ V u(z′), ∀z′ (6d)

F (V (z′, zm) , z′, zm) ≥ 0, ∀z′ (6e)

The inequality (6d) is the condition that the worker wants to continue in the match.

Inequality (6e) is the analogue for the firm. Notice that the feasible set of promised values

is nonempty, because the firm can always promise to separate, which satisfies both (6d)

and (6e).
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Properties of these optimal contracts have been derived by Thomas and Worrall (1988)

and Rudanko (2005, Section 2). In particular, the wage stays constants over the match

as long as no participation constraint binds. If, for example, the constraint (6d) starts

binding, the firm has to increase the wage to keep the worker within the firm. In the

full-commitment case, the wage is constant over the life of the match.

It remains to determine which of the contracts on the efficiency frontier is chosen. We

assume that, when firms and workers are matched in the aggregate state z, they chose the

optimal contract with the entry value V e (z) that maximizes the Nash product2

V e (z) = argmax
v

(v − V u(z))α (F (v, z, z) − κM )1−α (7)

where κM denotes the PMLTC motivated in the introduction. We assume that κM is paid

by the firm after the match is formed. F (v, z, z) has to be understood as the firm value

after paying κM .

Using the envelope condition

∂F (V e (z) , z, z)

∂V
= −

1

u′(w(z, z))
(8)

and denoting by F e (z) the firm’s value at (V e (z) , z, z), we can write the first order con-

dition for (7) as

α(F e (z) − κM)u′(we(z)) = (1 − α) (V e (z) − V u(z)) (9)

which is analogous to (4). Vacancy creation by firms is governed by the zero-profit condition

pF (θ(z))(F e (z) − κM) = κ (10)

To close the model, we have to determine the outside option of the worker which enters

the constraint (6d). It is given by

V u(z) = u(b) + β Ez′
[

V u(z′) + pW (z′) (V e (z′) − V u(z′))
]

(11)

2Rudanko (2005, Prop. 2.4) starts from a framework of competitive search and shows that the equilib-

rium is the same as with Nash bargaining where the bargaining weight of the worker equals the elasticity

of matches w.r.t. unemployment. For our purposes, we can start right away with the Nash bargaining

framework.
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3 The Effects of Embodied Technical Change

Before presenting numerical results of the model, we analyze the effects of the technology

specification (1) by a linearization of the model with linear utility about the deterministic

steady state. Notice that endogenous separations are not an issue here, because implicitly

we are dealing with infinitesimal fluctuations about the steady state. For the linearization,

we assume that z follows an AR(1) process, where the parameter σ is the speed at which

the process returns to its mean. In Proposition 1 we state a result about the response of

the job finding probability to aggregate productivity. For this we assume that, at the time

of the match, the total expected surplus is shared according to the Nash formula, but we

need not take a stand on whether the wage is renegotiated in later periods.

Proposition 1. In the model with linear utility, to a first order approximation about

the steady state, the elasticity ηpW

z of the job finding probability with respect to aggregate

productivity z satisfies

ηpW

z =
1 − α

α

1 + β(1 − δ)σ αz

1−β(1−δ)

1 − β [(1 − δ)(1 − σ) − p∗W (1 − ασ)]

1 − β(1 − δ − αp∗W )

1 − b
(12)

≈
1 − α

α

r + δ + αp∗W
r + δ + σ + p∗W

r + δ + σαz

r + δ

1

1 − b
(13)

Proof. See Appendix A.

The approximation (13) gives the continuous time limit, to which our model is quite

close, since we solve it with weekly frequency. Here, r denotes the interest rate, related to

the time discount factor by β = 1/(1 + r).

Inspecting (13), we first learn that the responsiveness of the job finding rate is inversely

related to 1−b, the difference between labor productivity and unemployment benefits. This

has been pointed out and explained in Costain and Reiter (2003). The new insight is that

the elasticity is increasing in αz, the degree of embodiedness. Moreover, this effect is

stronger if σ is higher. From the introduction we know that the firm’s value fluctuates

more under embodied technical progress, because the firm can lock in the currently high

level of productivity. Obviously, this effect is more important if productivity returns faster
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to its mean. In the limit case σ = 0, productivity changes are permanent, and ηpW

z is

unaffected by αz. If the model is calibrated to US data, we have p∗W >> r + δ +σ. In that

case, (13) can be further simplified to

ηpW

z ≈ (1 − α)
r + δ + σαz

r + δ

1

1 − b
(14)

Equ. (14) makes clear how embodied technical changes affects the elasticity. What matters

is the expected change in z, measured by σ, which affects the future outside option of the

worker, compared to the effective expected lifetime of a job, measured by r + δ.

If we further assume that wages are renegotiated each period according to (4), we can

derive the reaction of wages to aggregate productivity:

Proposition 2. In the model with linear utility and continuous Nash bargaining, to a first

order approximation about the steady state, wages satisfies

d w(z, zm)

d z
= α(1 − αz) + βα(1 − (1 − α)σ)ηpW

z

(1 − b)p∗W
1 − β(1 − δ − αp∗W )

(15)

≈ α(1 − αz) + αηpW

z (1 − b)
p∗W

r + δ + αp∗W
(16)

d w(z, zm)

d zm
= ααz (17)

Proof. See Appendix A.

Notice that d we(z)
d z

= d w(z,zm)
d z

+ d w(z,zm)
d zm

. If we use again the fact that in a calibration

to US data we have p∗W >> r + δ, (16) can be even further simplified to

d w(z, zm)

d z
≈ α + ηpW

z (1 − b) (18)

If (1 − b) is small, wages cannot fluctuate very strongly because they are closely tied to

productivity. If the elasticity ηpW

z is high, wages tend to fluctuate a lot, because the changes

in job finding probability make the outside option of the worker fluctuate. In fact we will

see in Section 4.3 that the model generates excessive wage volatility compared to the data.

I think this is not a feature specific to embodied technical progress; it will show up in

any model that has flexible wages, a sizeable match surplus, and a strongly fluctuating
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job finding probability. Existing specifications of the matching model have moderate wage

fluctuations because either ηpW

z is small (Shimer 2005) or 1 − b is small (Hagedorn and

Manovskii 2005) or the real wage is assumed to be rigid (Hall 2005).

4 Numerical Results

4.1 Parameter values

The model period is 1/48 of a year, corresponding roughly to a week. For the parameters

I use standard values from the literature. The discount rate is set to 1.2% quarterly,

so β = 0.9881/14. In the model with long-run contracts, I use log utility, U(c) = log x.

The parameter b, which captures both unemployment benefits and the value of leisure, is

the key parameter that determines the volatility of tightness and unemployment. I use

b = 0.745 − κM(1 − β(1 − δ)). For κM = 0, this gives b = 0.745, which is taken from

Costain and Reiter (2003, Table 1), so as to give a realistic response of the model to

long-run changes in unemployment benefits and taxation. For κM > 0, b gets reduced

so as to keep the total discounted surplus of the match unchanged. Without such an

adjustment, κM would reduce the total surplus of the match and increase the variability

of unemployment, as explained in Costain and Reiter (2003).

For the elasticity of matches w.r.t. unemployment I use α = 0.4. This is well within

the range of values that Petrongolo and Pissarides (2001, Table 3) report. With this value,

the model strikes a balance between explaining the variability of unemployment and the

variability of tightness. If I use a higher value of α, as Shimer (2005) and Rudanko (2005)

do, the model tends to underestimate the variability of unemployment, and overestimate

that of tightness. In this sense, the parameter is “estimated” from the data. For the job

separation rate, some recent papers have used a value of 40% annually. Here I deviate

and rather use 25% annually, δ = 0.25/48, which is closer to what earlier papers in the

matching literature have used. The main reason is that I assume in the model that technical

progress is linked to the match, not to the job, while in reality it is probably a mixture of
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both. Using a separation rate of 0.4 dilutes the effect of embodied technical change too

much. The matching efficiency Am is normalized to unity; this parameter only scales the

absolute number of vacancies, which is irrelevant for us. In each experiment, the vacancy

cost parameter is set such that the steady state unemployment rate is 5.67 percent, the

average in the US in the period 1951–2003.

The parameter αz, which measures the degree of embodied technical progress, is crucial

to obtain the right variability of unemployment. Next to the case αz = 0, I will present

results for two different values of αz that are chosen so as to match important cyclical

characteristics of the data. Choosing αz = 0.576, the model generates the same variance

of unemployment as in the data. Mortensen and Nagypal (2005, p.8) and Rudanko (2005,

p.21) suggest that the model should only explain the part of the volatility in the data that

is related to the movements of aggregate labor productivity, more precisely the regression

coefficient of unemployment on average labor productivity. This is achieved by choosing

αz = 0.302. That there are values of αz that achieve those targets is an important success

of the model.

For the productivity process, I use a 9-state Markov chain. From each state, only

neighbouring states can be reached within one model period. The transition probabilities

where chosen such that in each state, the conditional expectation satisfies Et zt+1 = ρzzt,

and the conditional standard deviation is σz. For each value of αz, I choose σz and ρz so

as to match the unconditional variance and the quarterly autocorrelation of average labor

productivity (which is not equal to z in the case αz > 0). Since the model with long-term

contracts takes a long time to compute, the values of σz and ρz were calibrated for the model

with short-term contracts. I use the same values then with long-term contracts, which

makes little difference for the calibrated targets. The states of the Markov chain where

chosen such that the outer points are ±2.5 times the unconditional standard deviation of

z.

For the PMLTC, I follow the calibration in Silva and Toledo (2007). The two most

important types of costs are the training costs and the initial productivity gap of a newly

hired worker. Total average cost of man-hours of training are estimated as 55 percent of the
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quarterly wage of newly hired workers (Silva and Toledo 2007, page 5). The productivity of

a newly hired worker is 40 percent lower in the beginning, and this gap is on average closed

within one year (Silva and Toledo 2007, page 10). Based on these numbers, I consider

PMLTC of 6 weeks of prodution (κM = 6) as a conservative estimate, while 12 weeks of

production (κM = 12) is roughly equivalent to the calibration of Silva and Toledo (2007).

I will show results for both calibrations, next to the case of κM = 0. In my model, the

PMLTC have to be paid at the beginning of the match, while in Silva and Toledo (2007)

they accrue over a more extended period of time (training and productivity gap), but this

should not affect much the dynamics of the model.

4.2 Explaining the cyclicality of labor market aggregates

Table 1 reports statistics for detrended US labor market data from 1951-2003. In Table 2

we find the simulation results from the model with short-term contracts, as described in

Section 2.2. In Table 3 are the results from the model with long-term contracts, described

in Section 2.3. Simulation results are averages over 500 runs, each of 63 years, with the

first 10 years discarded, so that the length of the simulated series is 53 years as in the data.

Data and simulation results are detrended by the HP filter with smoothing parameter 105.

The first block of Table 2 gives the result of the standard Mortensen/Pissardes model

(the case α = 0). It documents the wellknown failure of this model to explain the variability

of unemployment, vacancies, tightness and the job finding probability. The model falls

short of explaining the data by a factor of almost 5. Less dramatic shortcomings of the

model are the too low autocorrelation of vacancies, and that the Beveridge curve, the

negative correlation between unemployment and vacancies, is not as strong in the model

as in the data. From the first block of Table 3 we see that the introduction of log-utility and

long-term contracts has very little effect on the dynamics of unemployment and tightness.

This is in line with the findings of Rudanko (2005).

The second block of Tables 2 and 3 shows what happens if labor productivity is partially

embodied. The value αz = 0.302 was chosen so as to match the elasticity of unemployment
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with respect to labor productivity. We see that the corresponding elasticities of vacancies,

tightness and the job finding probability is also in line with the data. The autocorrelation

of vacancies and the Beveridge curve vary little in response to the change in αz. What

is interesting in Table 3 is that the endogenous separations, which are documented in the

variability of the separation rate δ, are infrequent enough not to affect the dynamics of the

main labor market aggregates. Note that in this calibration, I still assume κM = 0.

In the last block of Table 2, we set αz = 0.576 so as to match the variability of unem-

ployment. The standard deviations of vacancies, tightness and the job finding probability

are also approxiately right. The autocorrelation of vacancies and the Beveridge curve

change slightly, but in the wrong direction. If we compare this to the results in the third

block of Table 3, we see that now the endogenous separation are so strong that the Bev-

eridge curve gets the wrong sign. This is because in times of high productivity, there is

massive endogenous separation, leading to temporary spikes in unemployment. If there is

no reasonable way to avoid these waves of endogenous separations, we have to conclude

that the model with a high degree of embodiedness is incompatible with the facts. In

the fourth and fifth block of Table 3, we therefore investigate whether realistically sized

PMLTC are able to bring the model in line with the data. We see that already the conser-

vative calibration κM = 6 goes a long way in solving the problem. The Beveridge curve is

less strong than in the model with exogenous separations only. Interestingly, the standard

deviation of the separation rate is close to what we find in the data. That separations are

positively correlated with labor productivity is counterfactual, but one should remember

that in the data, the countercyclicality of separations is rather weak. The endogenous

separation mechanism in this model could be part of the explanation.

In the calibration κM = 12, we see that endogenous separations are again infrequent,

and the labor market dynamics of the model differs very little from the model with short-

term contracts.

In sum, if we want to use the matching model to explain the systematic part of unem-

ployment and vacancies (the elasticity with respect to aggregate labor productivity z), we

can achieve this with a low level of embodiedness, αz = 0.302. In that case, endogenous
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separations are infrequent even without assuming any PMLTC. If we want the model to

generate unconditional variances of unemployment and vacancies as high as in the data, a

higher level of embodiedness is necessary, αz = 0.576. Not allowing for any PMLTC, the

implications of the model for the correlation of unemployment and labor productivity are

clearly counterfactual. However, PMLTC of the size proposed by Silva and Toledo (2007)

brings the model predictions in line with the data.

4.3 Explaining the cyclicality of real wages

The relationship of wages and the business cycle is difficult to pin down. From Table 1

we see that the average wage (hourly compensation nonfarm business sector) is about as

volatile as labor productivity per worker, but is only mildly procyclical. Relating hourly

compensation to the hourly labor product (not product per worker as in Table 1) in the

nonfarm business sector, after taking logs and detrending, one finds that the correlation

coefficient is 0.5173 for the time period 1951-2003. The regression coefficient of wages on

the hourly product is 0.573. Measuring cyclicality by the correlation with unemployment,

we come to similar conclusions. The correlation coefficient between hourly compensation

and the unemployment rate (detrended, but no logs) is only -0.096, and the regression

coefficient is -0.160. This means that a one percentage point increase in unemployment is

related to a 0.160 percent reduction in wages. Based on this finding, some recent papers

(Hall (2005), among others) have argued that the low responsiveness of real wages to

aggregate productivity is a key element in explaining the high variability of unemployment.

Studies using panel data tend to find a stronger procyclicality of wages, partly because

they can control for the composition bias in the workforce over the cycle (Solon, Barsky,

and Parker 1994). This finding has been reinforced by recent studies which distinguish the

cyclicality of job stayers and job movers. Hart (2003) and Devereux and Hart (2005) for

UK data, and many studies for US data (cf. Shin and Solon (2004) and references there)

find that the wages of workers when they change jobs are significantly more flexible than

the wages of those who stay in the same job (wages of workers who change the job but stay
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in the same firm are somewhere in-between). The results summarized in Table 4 find that

a one percentage point increase in the unemployment rate is associated with a reduction

in the real wage of male job stayers of 1–2 percent, and of male job movers of 2–3 percent.

In yet preliminary work based on CPS data, Haefke, Sonntag, and van Rens (2006) report

the elasticity of wages with respect to aggregate labor productivity. For job movers, they

find an elasticity of about 1, while for job stayers, they find an elasticity of about 0. Again,

the finding is that entry wages, which determine the hiring incentives of firms, are flexible,

while the wages of incumbents move relatively little.

From Table 2 we see that the model with short-term contracts is unable to explain

those stylized facts. The model predicts almost perfectly cyclical wages. With disembodied

technical change, the wage fluctuates much more than in the data, for the reasons analyzed

in Section 3. An interesting finding is that embodied technical progress does not generate

enough difference between average and entry wages. This model is therefore at odds both

with the macro and the micro evidence on wages.

The model with long-term contracts fits the data better. The fluctuations of aver-

age wages are close to what we find in aggregate data, and the model predicts a much

weaker correlation between average wages and producitivity or unemployment, although

still somewhat higher than in aggregate data (cf. Table 3). Notice that the model with

long-term contracts and neutral technical change (αz) predicts too low wage variability,

while the model with short-term contracts and embodied technical change predicts too

much of it. Long-term contracts and embodied technical change gets the variability about

right. Table 5 reports the results from a regression of changes in wages on the change

in average productivity and on the change in unemployment. This should be compared

to the empirical results in Table 4.3 We learn that the model with long-term contracts

generates a sharp distinction between average and entry wages, even stronger than in the

data. These results do not depend very much on the parameter αz, therefore they do not

3A referee has pointed out that empirical estimates and model simulations are not fully comparable,

since the model talks about movements from unemployment to employment, while the movers in the data

also include job-to-job transitions, which probably have a different wage dynamics.
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provide independent evidence on whether technical change is embodied or not.

Four main conclusions emerge from these results. First, the model with long-term

contracts avoids the excessive wage volality caused by embodied technical progress. The

variability of aggregate wages is similar in the model and in the data. Second, there is

little evidence of exogenous wage rigidity. The cylicality of wages for new hires, which

determine the firms’ incentives to create vacancies, is similar in the micro data and in the

model. The model is not perfect in this respect: the elasticity of wages of new hires both

with respect to aggregate labor productivity and with respect to the unemployment rate is

somewhat higher in the model than in the data. This might be due to the fact that neutral

and embodied technical change are perfectly correlated, due to the one-shock specification

(1). Future work should relax this assumption. Third, the results give additional support

for the importance of long-term wage contracts. Although embodied technical progress

as specified in (1) is a potential explanation for why entry wages fluctuate more than

average wages, the quantitative analysis reveals that this effect is not strong enough. We

need long-term contracts, which stabilize the wages on existing relationships through wage

insurance.4 Finally, the model underpredicts the cyclicality of the wages of job stayers.

Future work might solve this problem by a model where workers are allowed to save, which

reduces the wage-smoothing motive in the optimal contract.

4A related strand of literature identifies cohort effects in wages, and find that the time at which a worker

enters a firm or enters the labor market for the first time, has a persistent effect on a wage. Workers who

entered in a recession will receive lower wages than workers who entered in a boom, even many years after

entering the firm (see for example Beaudry and DiNardo (1991), Baker, Gibbs, and Holmstrom (1994),

Oreopoulos, von Wachter, and Heisz (2006)). Both long-term contracts and embodied technical change

help to explain these stylized facts. Again it turns out that long-term contracts are needed to explain the

magnitude of the effects in the data. More details can be found in an earlier version of this paper, Reiter

(2006).
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4.4 Investment-Specific Technological Change and the Labor Mar-

ket

In Section 4.2 we have seen that a substantial degree of embodied technical progress is

necessary to explain the variability of unemployment. As explained in the introduction,

there seems to be no direct evidence that would tell us to what extent technical progress

is embodied in job matches. There is, however, ample evidence on investment-specific

technological change. If new capital is more productive than existing vintages, and if new

job matches get a higher share of new capital than the already existing matches, than this

may explain productivity differentials between jobs of different vintages. In Hornstein,

Krusell, and Violante (2007, Section 2), this is achieved by assuming that one worker is

always matched with one unit of new capital, and that capital becomes firm-specific, once

it has been installed.

Our model does not include capital, but we can nevertheless ask whether the existing

measures of investment-specific technological change, if taken as a proxy for vintage-specific

productivity, are helpful in explaining labor market aggregates. For that purpose I consider

the Cummins and Violante (2002) measure of the technological gap for equipment and

software (CVG). It is defined as the percentage difference in the efficiency of a new capital

vintage vs. the average efficiency of old vintages (where capital is measured in constant-

quality consumption units). Using the same measure, Fisher (2006) finds that investment-

specific technology shocks have an important role in explaining business cycle fluctuations.

While the low-frequency variations of the CVG are most striking, it also fluctuates a

lot at business cycle frequencies. The following statistics as well as Figure 1 refer not to

the original CV G, but to log(1 + CV G), to make the series compatible with the theo-

retical counterpart in the model simulations. Then the CGV has a standard deviation of

0.0164 after HP filtering with smoothing parameter 100, and of 0.0249 after filtering with

parameter 105/16. Note that I divided the usual smoothing parameters by 16, since CGV

has annual frequency. For comparison, the technological gap in our model has standard

deviation 0.007 in the case of αz = 0.302, and 0.021 in the case of αz = 0.576.
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Figure 1 plots the log of the job finding probability pW , together with the CGV, scaled

by a factor of 0.36 · 9.9287. The factor 0.36 is motivated by the assumption that the share

of capital in production is 0.36, and 9.9287 is the regression coefficient of log(pW ) on the

labor productivity gap in the model with αz = 0.576. The dotted line in Figure 1 can

be interpreted as the job finding probability as predicted by the movement in CGV. Both

series are demeaned, but not detrended, because the CVG seems to have structural breaks

and is difficult to detrend. We see that from about 1960 to 1985, the predicted value

follows the data reasonably well. Outside this range, we are less successful. For example,

the increase in pW during the Korean war and the fall in pW during the 1990/91 recession

seem to be unrelated to changes in CVG. Consistent with this finding, Canova, Lopez-

Salido, and Michelacci (2007) find that the recession of the early 90’s is almost entirely

explained by neutral rather then investment-specific technology shocks. Obviously, the

one-shock specification (1) is not rich enough to explain all the cyclical episodes of the

post-war US economy.

5 Conclusions

The paper has shown that a slight modification of the standard specification of labor

productivity, which allows for partial embodiment of technical progress in a match, goes

a long way in reconciling the Mortensen/Pissarides matching model with the US data.

Without resorting to any exogenous rigidities, the model can explain the high variability

of vacancies, job finding probabilities and the unemployment rate. The version with long-

term wage contracting is consistent with the low volatility of the average wage, and the

fact that wages of newly formed matches fluctuate more than average wages.

The question is then whether our description of the productivity process, Equ. (1), is

realistic. That this process helps the matching model to explain labor market fluctuations is

certainly indirect evidence in its favor. It is encouraging that the model explains reasonably

well the US labor market fluctuations in the period 1960 to 1985, if we take investment-

specific technical change as a proxy for embodied technical change. To what extent the
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evidence reported in Bowlus (1995) can be seen as supportive, will finally depend on the

success of alternative explanations such as Barlevy (2002). Unfortunately, the dynamics of

wages does not tell us very much about productivity. Once we assume long-term contracts,

embodied technical progress does not make sufficient difference in the dynamics of entry

or average wages to provide clear evidence in favor or against embodied technical change.

Future research should address these issues. On the theoretical side, one should explore

structural explanations of why technical progress, through innovations in capital and con-

sumption goods, is embodied in job matches. This might guide more empirical studies to

find direct evidence for embodied technical change. A satisfactory model would allow pro-

ductivity to be embodied in jobs such that after a separation, a valuable vacancy might be

left. This would require a substantially more complicated model than the one considered

in this paper.
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Figure 1: Technological gap and job finding probability, US data
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Table 1: Labor market fluctuations, US data 1951-2003

za U V ac θ pW δ W a

stdev 0.020 0.191 0.202 0.383 0.164 0.067 0.018
relstd 1.000 9.482 10.053 19.045 8.168 3.320 0.895
autocorr 0.889 0.939 0.948 0.946 0.912 0.635 0.941
corr(u) -0.417 1.000 -0.901 -0.973 -0.959 0.603 -0.058
corr(z) 1.000 -0.417 0.383 0.410 0.402 -0.570 0.350
elast(z) 1.000 -3.958 3.852 7.810 3.288 -1.891 0.313

Note: all data are in logs and detrended by the HP filter with smoothing parameter 105.
za: average labor productivity; U : unemployment rate; V ac: vacancies; θ: tightness; pW :
job finding probability; δ: separation rate; W a: average hourly wages non-farm business

sector
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Table 2: Simulation results, model with short-term contracts

za U V ac θ pW δ W a W e z z/za

Short-term contracts, αz = 0
stdev 0.020 0.044 0.042 0.083 0.050 0.000 0.019 0.019 0.020 0.000
relstd 1.000 2.196 2.101 4.090 2.454 0.000 0.944 0.944 1.000 0.000
autocorr 0.887 0.937 0.759 0.887 0.887 0.000 0.887 0.887 0.887 0.000
corr(u) -0.953 1.000 -0.814 -0.954 -0.954 0.000 -0.953 -0.953 -0.953 0.000
corr(z) 1.000 -0.953 0.948 0.999 0.999 0.000 1.000 1.000 1.000 0.000
elast(z) 1.000 -2.093 1.991 4.084 2.451 0.000 0.944 0.944 1.000 0.000

Short-term contracts, αz = 0.302
stdev 0.020 0.084 0.082 0.158 0.095 0.000 0.028 0.031 0.027 0.008
relstd 1.000 4.132 4.085 7.778 4.669 0.000 1.401 1.542 1.338 0.374
autocorr 0.888 0.930 0.738 0.874 0.874 0.000 0.878 0.875 0.875 0.857
corr(u) -0.958 1.000 -0.793 -0.947 -0.947 0.000 -0.950 -0.945 -0.945 -0.819
corr(z) 1.000 -0.958 0.907 0.985 0.985 0.000 0.995 0.990 0.990 0.868
elast(z) 1.000 -3.960 3.705 7.664 4.600 0.000 1.394 1.528 1.326 0.326

Short-term contracts, αz = 0.576
stdev 0.020 0.189 0.212 0.373 0.225 0.000 0.051 0.059 0.039 0.021
relstd 1.000 9.482 10.665 18.717 11.266 0.000 2.534 2.940 1.941 1.057
autocorr 0.889 0.916 0.686 0.839 0.839 0.000 0.851 0.845 0.845 0.829
corr(u) -0.927 1.000 -0.729 -0.921 -0.921 0.000 -0.922 -0.915 -0.919 -0.810
corr(z) 1.000 -0.927 0.785 0.916 0.916 0.000 0.958 0.941 0.941 0.780
elast(z) 1.000 -8.786 8.365 17.137 10.314 0.000 2.428 2.767 1.827 0.827

Notes: W e: wages of new matches; z: current aggregate labor productivity (equal to
productivity of new matches)
stdev: unconditional standard deviation in simulation; relstd: stdev(x) / stdev(za); auto-
corr: first order autocorrelation; corr(u): correlation with U ; corr(z): correlation with za;
elast(z): regression coefficient on za (equals product of relstd and corr(z))

26



Table 3: Simulation results, model with long-term contracts
za U V ac θ pW δ W a W e z z/za

Long-term contracts, αz = 0, κM = 0
stdev 0.020 0.045 0.043 0.084 0.050 0.000 0.005 0.010 0.020 0.000
relstd 1.000 2.227 2.130 4.149 2.490 0.000 0.248 0.513 1.000 0.000
autocorr 0.887 0.937 0.760 0.887 0.887 0.000 0.981 0.887 0.887 0.000
corr(u) -0.953 1.000 -0.814 -0.954 -0.954 0.000 -0.613 -0.954 -0.953 0.000
corr(z) 1.000 -0.953 0.948 0.999 0.999 0.000 0.499 1.000 1.000 0.000
elast(z) 1.000 -2.124 2.020 4.143 2.486 0.000 0.126 0.513 1.000 0.000

Long-term contracts, αz = 0.302, κM = 0
stdev 0.020 0.084 0.084 0.158 0.095 0.004 0.009 0.018 0.027 0.008
relstd 1.000 4.152 4.144 7.820 4.694 0.167 0.449 0.897 1.338 0.374
autocorr 0.888 0.926 0.736 0.874 0.874 0.630 0.972 0.874 0.875 0.857
corr(u) -0.953 1.000 -0.779 -0.943 -0.943 -0.014 -0.650 -0.943 -0.940 -0.814
corr(z) 1.000 -0.953 0.905 0.985 0.985 0.047 0.643 0.988 0.990 0.867
elast(z) 1.000 -3.957 3.747 7.702 4.623 0.019 0.292 0.886 1.325 0.325

Long-term contracts, αz = 0.576, κM = 0
stdev 0.023 0.218 0.321 0.320 0.192 0.251 0.018 0.033 0.039 0.020
relstd 1.000 9.366 13.847 13.853 8.321 10.785 0.752 1.418 1.672 0.866
autocorr 0.904 0.609 0.654 0.844 0.844 0.052 0.954 0.845 0.845 0.815
corr(u) -0.376 1.000 0.317 -0.361 -0.362 0.554 -0.289 -0.346 -0.336 -0.213
corr(z) 1.000 -0.376 0.654 0.901 0.901 0.176 0.844 0.909 0.912 0.599
elast(z) 1.000 -3.483 9.070 12.489 7.502 1.936 0.636 1.290 1.525 0.525

Long-term contracts, αz = 0.576, κM = 6
stdev 0.021 0.182 0.225 0.361 0.217 0.073 0.018 0.038 0.039 0.021
relstd 1.000 8.835 10.887 17.560 10.561 3.371 0.872 1.852 1.880 1.014
autocorr 0.893 0.870 0.683 0.841 0.841 0.017 0.958 0.844 0.845 0.826
corr(u) -0.863 1.000 -0.589 -0.864 -0.865 0.086 -0.622 -0.862 -0.850 -0.723
corr(z) 1.000 -0.863 0.774 0.913 0.913 0.143 0.787 0.928 0.933 0.741
elast(z) 1.000 -7.642 8.432 16.045 9.651 0.500 0.688 1.719 1.756 0.756

Long-term contracts, αz = 0.576, κM = 12
stdev 0.020 0.188 0.211 0.371 0.223 0.005 0.019 0.040 0.039 0.021
relstd 1.000 9.385 10.596 18.546 11.162 0.248 0.923 2.024 1.938 1.055
autocorr 0.889 0.915 0.686 0.839 0.839 0.500 0.959 0.844 0.845 0.829
corr(u) -0.925 1.000 -0.726 -0.919 -0.919 -0.030 -0.672 -0.924 -0.917 -0.807
corr(z) 1.000 -0.925 0.786 0.916 0.916 0.059 0.767 0.933 0.940 0.777
elast(z) 1.000 -8.678 8.324 16.987 10.223 0.028 0.710 1.890 1.823 0.823

Notes: cf. Table 2
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Table 4: Elasticity of wages w.r.t. productivity and unemployment, US Data 1951-2003

All Male Female
Stayers Movers Stayers Movers Stayers Movers

Elasticity w.r.t. unemployment

Aggregate data -0.16
Haefke, Sonntag, and van Rens (2006) 0.18 -1.30
Hart (2003, Table 3) -1.22 -2.01 -1.30 -1.70
Devereux and Hart (2005, Table 3) -1.73 -2.92 -1.66 -2.49
Shin and Solon (2004, Tables 1-4) ≈ -1.00

Elasticity w.r.t. productivity

Aggregate data 0.573
Haefke, Sonntag, and van Rens (2006) 0.209 0.934

Notes: external movers in the case of Devereux and Hart (2005)
Haefke, Sonntag, and van Rens (2006): Table 7, mean wages, 1984-2006,

corrected for education and demographics
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Table 5: Elasticity of wages

Elast. w.r.t. Zave Elast. w.r.t. U
Model W a W e W s W a W e W s

STC, αz = 0 0.944 0.944 0.944 -7.387 -7.387 -7.387
STC, αz = 0.302 1.461 1.631 1.460 -5.544 -6.154 -5.539
STC, αz = 0.576 2.912 3.431 2.910 -3.579 -4.199 -3.574
LTC, αz = 0, κM = 0 0.034 0.513 0.032 -0.588 -3.967 -0.553
LTC, αz = 0.302, κM = 0 0.091 0.946 0.087 -0.581 -3.444 -0.552
LTC, αz = 0.576, κM = 0 0.316 1.721 0.316 0.089 0.062 0.097
LTC, αz = 0.576, κM = 6 0.276 2.177 0.268 -0.243 -1.864 -0.227
LTC, αz = 0.576, κM = 12 0.269 2.344 0.260 -0.532 -2.969 -0.512

Notes: entries are regression coefficients.
Dependent variable: changes in the logs of W a (average wage) or W e (entry wage) or W s

(wage of job stayers)
Independent variable: changes in the log of za (average labor productivity) or the value of
U (unemployment rate)
All variables are detrended.
STC: short-term contracts; LTC: long-term contracts;
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A Proofs of Propositions 1 and 2

W.l.o.g., we can normalize Am = 1 . Define the total job surplus as S(z, zm) ≡ F (z, zm) +
V (z, zm) − V u(zc). Adding (3a) and (3c) and subtracting (3b), we obtain an equation
defining the surplus:

S(z, zm) = Y (z, zm) − b + β Ez′
[

(1 − δ)S(z′, zm) − αpW (z)S(z′, z′)
]

(19)

Take a first order approximation of (19) at the steady state:

S∗ + S∗

c z̃ + S∗

mz̃m = 1 + (1 − αz)z̃ + αz z̃m − b

+ β Ez′

[

(1 − δ)(S∗ + S∗

c z̃
′ + S∗

mz̃m) − αp∗W (S∗ + (S∗

c + S∗

m)z̃′) − α
d pW

d z
S∗z̃

]

(20)

Here, the asterisk denotes steady state values, and the subscripts ’c’ and ’m’ denote partial
derivatives with respect to current and match-time productivity, z and zm, respectively.

If z̃ follows an AR(1) process, we can write Ez′ z̃
′ = (1 − σ)z̃, and (20) simplifies to

S∗ + S∗

c z̃ + S∗

mz̃m = 1 + (1 − αz)z̃ + αz z̃m − b

+ β

[

(1 − δ)(S∗ + S∗

c (1 − σ)z̃ + S∗

mz̃m) − αp∗W (S∗ + (S∗

c + S∗

m)(1 − σ)z̃) − α
d pW

d z
S∗z̃

]

(21)

Equ. (21) must hold for all values of z̃ and z̃m; collecting terms we get

S∗ = 1 − b + β(1 − δ − αp∗W )S∗ (22a)

S∗

c = (1 − αz) + β

[

(1 − δ)(1 − σ)S∗

c − αp∗W (1 − σ)(S∗

c + S∗

m) − α
d pW

d z
S∗

]

(22b)

S∗

m = αz + β(1 − δ)S∗

m (22c)

From (2) and (5), using F (z, z) = (1 − α)S(z, z) at the time of the match, we obtain

pW (z) = pF (z)(α−1)/α =
(

κ−1(1 − α)S(z, z)
)(1−α)/α

(23)

Let us define, for any function x of z, the elasticity of x with respect to z at the steady
state as ηx

z ≡ d x
d z

∣

∣

z=1
1

x(1)
. Then we get from (23) that

ηpW

z =
1 − α

α
ηS()

z =
(1 − α)

α

(S∗

c + S∗

m)

S∗
(24)

Using (24) in (22b), and adding up (22b) and (22c), we get

S∗

c + S∗

m = 1 + β [(1 − δ)(1 − σ) − p∗W (1 − ασ)] (S∗

c + S∗

m) + β(1 − δ)σS∗

m (25)
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Solving (22c) for S∗

m and plugging it into (25), we can solve for

S∗

c + S∗

m =
1 + β(1 − δ)σ αz

1−β(1−δ)

1 − β [(1 − δ)(1 − σ) − p∗W (1 − ασ)]
(26)

Solving (22a) for S∗ and using (24) and using (26), we obtain Equ.(12) of Proposition 1.
For the continuous time limit, replace β by (1 − r∆), σ by σ∆, δ by δ∆ and pW by pW ∆,
and take the limit ∆ → 0. This gives Equ. (13).

For Proposition 2, we get from (4) that F (z, zm) = (1 − α)S(z, zm) and V (z, zm) −
V u(zc) = αS(z, zm). Then we can condense (3) to

αS(z, zm) = w(z, zm) − b + β Ez′
[

(1 − δ)αS(z′, zm) − pW (z)αS(z′, z′)
]

(27a)

(1 − α)S(z, zm) = Y (z, zm) − w(z, zm) + β Ez′ [(1 − δ)(1 − α)S(z′, zm)] (27b)

Subtract (27b), divided by 1 − α, from (27a), divided by α, to obtain

w(z, zm) = (1 − α)b + αY (z, zm) + α(1 − α)βpW (z) Ez′ S(z′, z′) (28)

Taking derivatives at the steady state we get

wc = α(1 − αz) + α(1 − α)β

[

d pW

d z
S∗ + p∗W (1 − σ)(S∗

c + S∗

m)

]

= α(1 − αz) + βα(1 − (1 − α)σ)ηpW

z p∗W S∗ (29)

wm = ααz (30)

Solving (22a) for S∗ and inserting into (29) we get Equ. (15) in Proposition 2. For the
continuous time limit (16), take the same steps as above.
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