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Abstract
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1 Introduction

Stochastic general equilibrium models with incomplete markets and a continuum of het-
erogeneous agents play a more and more important role in macroeconomics. Early con-
tributions to the numerical solution of these models are Krusell and Smith (1998) and
Den Haan (1996). The former approach is still the most widely used method to handle
those models. The last few years have seen an increasing effort to develop methods that
can handle more complicated models or yield an even more accurate solution (cf. Preston
and Roca (2007) and Den Haan and Rendahl (2010) and the contributions summarized in
Den Haan (2010)). Common to all those approaches so far is that they use approximate
aggregation with a very small state vector. The relevant cross-sectional distribution in the
model is summarized by a small number of statistics.

The present paper is a further step in a research program that aims at obtaining ac-
curate solutions with a higher-dimensional state vector. The first step was done in Reiter
(2009b), developing a method that uses a high-dimensional, non-parametric approxima-
tion to the cross-sectional distribution. The method allows for a nonlinear relationship
between individual decisions and individual states, so that it can handle, for example, a
consumption function with borrowing constraints. However, the relationship between in-
dividual decisions and aggregate states is linearized, which allows to compute a solution
with many state variables, in the range of 1000-2000 on a PC. This method can be seen
as an analogue to the linearization methods that have been widely used for business cycle
models, generalized to models of heterogeneous agents and incomplete markets.

The method in Reiter (2009b) avoids aggregation problems by using a very high-
dimensional state vector. One could say that this is overkill: studying the aggregation
problem, Reiter (2009a) shows that it is possible to reduce the number of state variables
substantially, and still get a solution that is precise basically up to machine precision. Re-
ducing accuracy a little bit, the paper further shows how to obtain very precise solutions
of the linearized model with a medium-dimensional state vector.

The topic of the present paper is the computation of higher-order approximations with
a medium-dimensional state vector. In a concrete example, I compute a solution where the
decision of economic agents is a quadratic function in the aggregate state variables (exten-
sions to higher-order polynomials are straightforward). The state vector includes up to 15
statistics of the cross-sectional distribution. The method is based on the backward-iteration
approach of Reiter (2010), which was developed as an alternative to the Krusell/Smith al-
gorithm, but so far has only been applied with a low-dimensional state (one or two moments
of the distribution; cf. (Den Haan 2010) for a comparison of the performance of the dif-
ferent algorithms). Here I am going to show how to use this approach for higher-order
solutions with a medium-dimensional state vector. To make this possible, it is crucial to
exploit the information obtained in the linearized solution. In this paper, I restrict at-
tention to the case of small shocks, studying the solution in a small neighborhood of the
steady state. This can be seen as the analogue to the second-order approximations that
are now widely used in the analysis of DSGE models (Judd and Guu 1993; Collard and
Juillard 2001; Schmitt-Grohé and Uribe 2004). In the conclusions I will briefly discuss how

2



to extend this approach to the case of big shocks.
The plan of the paper is as follows. Section 2 presents the example economy to which

we apply the method, a variant of the Krusell/Smith model. Section 3 discusses approx-
imate aggregation in a linearized setup. Section 4 presents the method for higher-order
approximations. Section 5 presents numerical results, and Section 6 concludes. The Matlab
programs are available at http://elaine.ihs.ac.at/~mreiter/nlaa.tar.gz.

2 The Stochastic Growth Model With Heterogeneous

Agents and Incomplete Markets

To keep the exposition as transparent as possible, I apply the method to a simple version of
the Krusell/Smith model. The model is very similar to Reiter (2009b) and Reiter (2009a).
The following exposition of the model closely follows the latter paper.

There is a continuum of infinitely lived households of unit mass. Households are ex ante
identical, and differ ex post through the realization of their individual labor productivity.
They supply their labor inelastically. Production takes place in competitive firms with
constant-returns-to-scale technology. A government is introduced into this model to the
sole purpose of creating some random redistribution of wealth. This helps to identify the
effect of the wealth distribution on the dynamics of aggregate capital.

2.1 Production

Output is produced by perfectly competitive firms, using the Cobb-Douglas gross produc-
tion function

Yt = Y(Kt−1, Lt, θt) = AθtK
α
t−1L

1−α
t , 0 < α < 1 (1)

where A is a constant. Production at the beginning of period t uses Kt−1, the aggregate
capital stock determined at the end of period t− 1. Since labor supply is exogenous, and
individual productivity shocks cancel due to the law of large numbers, aggregate labor
input is constant and normalized to Lt = 1, cf. Section 2.3. Aggregate capital is obtained
from summing over all households, cf. (19).

The aggregate resource constraint of the economy is

Kt = (1 − δ)Kt−1 + Yt − Ct (2)

where δ is the depreciation rate and Ct is aggregate consumption. The aggregate produc-
tivity parameter θt follows the AR(1) process

log θt+1 = ρθ log θt + εθ,t+1 (3)

where εθ is an i.i.d. shock with expectation 0 and standard deviation σz. The before tax
gross interest rate R̄t and wage rate W̄t are determined competitively:

R̄t = 1 + YK(Kt−1, Lt, θt) − δ (4)

W̄t = YL(Kt−1, Lt, θt) (5)
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2.2 The Government

The only purpose of the government is to create some random redistribution between
capital and labor. In period t, the government taxes the capital stock accumulated at the
end of period t− 1 at rate τk

t , and labor at rate τ l
t , so that after tax gross interest rate Rt

and wage Wt are related to before tax prices by

Rt = R̄t − τk
t (6)

Wt = W̄t(1 − τ l
t ) (7)

The tax rate on capital follows an AR(1) process around its steady state value τk∗:

τk
t+1 − τk∗ = ρτ (τ

k
t − τk∗) + ετ,t+1 (8)

where ετ is an i.i.d. shock with expectation 0 and standard deviation στ . The labor tax is
determined by a balanced-budget requirement

τk
t Kt−1 + τ l

tW̄tLt = 0 (9)

2.3 The Household

There is a continuum of households, indexed by h. Each household supplies inelastically
one unit of labor. Households differ ex post by their labor productivity ξt,h, which is
assumed to be i.i.d. both over households and over time. It is normalized to have unit
mean:

E ξt,h = Et−1 ξt,h = 1 (10)

Net labor earnings are then given by

yt,h = Wt(1 − τ l
t )ξt,h (11)

Household h enters period t with asset holdings kt−1,h left at the end of the last period. It
receives the after tax gross interest rate Rt on its assets, such that the available resources
after income of period t (“cash on hand”) are given by

χt,h = Rtkt−1,h + yt,h (12)

(13)

Cash on hand is split between consumption and asset holdings:

kt,h = χt,h − ct,h (14)

We impose the borrowing constraint

kt,h ≥ k = 0 (15)
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2.4 Finite Approximation of the Model Equations

2.4.1 Household Productivity, Consumption Function and the Euler Equation

Individual productivity ξt,h has a discrete distribution, taking on the values ξ̄j with prob-
abilities ωξ(j) for j = 1, . . . , ny.

1

In each period t, I represent the savings function kt(χ) by ns+1 numbers: a critical level
χc

t where the borrowing constraint starts binding, and the values kt,i, i = 1, . . . , ns at ns

knot points χ̄t,i with χ̄t,i > χc
t . The knot points are chosen as χ̄t,0 = χc

t and χ̄t,i = χc
t + ¯̄χi,

i = 1, . . . , ns with some fixed set of grid points ¯̄χi. These ns + 1 numbers are stacked into
the decision vector dt.

Off the knot points χ̄t,i, the savings function is approximated by

k̂(χ; dt) =











k for χ ≤ χc
t

CSI(χ; dt) for χc
t < χ ≤ χ̄t,ns

kt,ns
+ CSI ′(χ̄t,ns

; dt)(χ− χ̄t,ns
) for χ > χ̄t,ns

(16)

where CSI(χ; dt) stands for “cubic spline interpolation”, the natural cubic spline that
interpolates the points (χc

t , k), (χ̄t,i, kt,i), i = 1, . . . , ns. Beyond the last knot point χ̄t,ns
, we

approximate the savings function by a straight line, with the slope given by the derivative
of the spline at kt,ns

.

The consumption function is then given by Ĉ(χ; dt) ≡ χ− k̂(χ; dt). The approximation
of the saving function has ns + 1 degrees of freedom. We therefore apply a collocation
method and require the household Euler equation to hold at the knot points χ̄t,i:

U ′

(

Ĉ(χ̄t−1,i; dt−1)
)

= β

ny
∑

j=1

ωξ(j)
[

(R̄t − τk
t )U ′

(

Ĉ(χ̄ij ; dt)
)]

+ ηc
it, i = 0, . . . , ns (17a)

where
χ̄ij ≡ (R̄t − τk

t )
(

χ̄t−1,i − Ĉ(χ̄t−1,i; dt−1)
)

+ W̄t(1 − τ l
t )ξ̄j (17b)

For any χ < χc
t , the Euler equation does not hold with equality, but we know that Ĉ(χ; dt) =

χ. Notice that Equ. (17a) uses the notation of Sims (2001): the ηc
it are the expectation

errors that result from the aggregate shocks (idiosyncratic shocks are handled by summing
over the quadrature points). They are determined endogenously in the solution of the
system.

2.4.2 Wealth Distribution

In the model with a continuum of agents, the ergodic cross-sectional distribution of wealth
has an infinite number of discrete mass points, because the distribution of idiosyncratic
productivity is discrete, so that households at the borrowing constraint k = 0 return to

1The main difference between the present model and Reiter (2009b) is that in the latter, productivity
is assumed to have a continuous distribution. The current setup is considerably simpler.
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the region of positive k in packages of positive mass. I approximate this complicated dis-
tribution by a finite number of mass points at a predefined grid k = k̄1, k̄2, . . . , k̄nk

= kmax.
The maximum level kmax must be chosen such that in equilibrium very few households are
close to it.

The key element of the approximation is the following. If the mass φ of households
in period t saves the amount k̃ with k̄i ≤ k̃ ≤ k̄i+1, I approximate this by assuming that
φ·ψ(i, k̃) households end up at grid point k̄i, while φ·ψ(i+1, k̃) = φ·(1−ψ(i, k̃)) households
end up at grid point k̄i+1. This random perturbation of capital is done such that aggregate
capital is not affected, so we require that ψ(i, k̃)k̄i + ψ(i+ 1, k̃)k̄i+1 = k̃. This is achieved
by defining

ψ(i, k) ≡











1 − k−k̄i

k̄i+1−k̄i
if k̄i ≤ k ≤ k̄i+1

k−k̄i−1

k̄i−k̄i−1
if k̄i−1 ≤ k ≤ k̄i

0 otherwise

(18)

The function ψ(i, k) gives the fraction of households with savings k which end up at grid
point k̄i. For any k, ψ(i, k) is non-negative and ψ(i, k) > 0 for at most two values of i.

Define φt(i) as the fraction of households at time t that have capital level k̄i. Then we
can write aggregate capital as

Kt =

nk
∑

i=1

k̄iφt(i) (19)

Stack the φt(i) into the column vector

Φt ≡







φt(0)
...

φt(nk)






(20)

which describes the cross-sectional distribution of capital at time t. We can now describe
the dynamics of the capital distribution for a given savings function. The transition from
the end-of-period distribution Φt−1 to Φt is given by the linear dynamic equation

Φt = Π (dt;wt, Rt)Φt−1 (21)

where the elements of the transition matrix Πt are given by

Πi′,i (dt;wt, Rt) =

ny
∑

j=1

ωξ(j)ψ(i′, Rtk̄i +Wtξt,j − Ĉ(Rtk̄i +Wtξt,j; dt)) (22)

From the properties of ψ(i, k), each column of Π has at most 2ny non-zero elements. In
should be understood in (22) that factor prices Rt and Wt are functions of (Φt−1, zt).
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2.4.3 The Discrete Model

In the discrete model, aggregate capital K is given by (19). Aggregate consumption can
be written in the same way. Because of inelastic labor supply and the assumptions (10)
about labor productivity, the law of large numbers2 implies that aggregate effective labor
is given by Lt = 1.

With the approximations of Sections 2.4.2 and 2.4.1 the model is reduced to a finite set
of equations in each period t. To write it with the minimum number of variables, we can say
that the discrete model consists of the equations (3), (8), (17) and (21). These equations
define, for each period t, a system of ns + nk + 3 equations in just as many variables: dt,
Φt, θt and τk

t , understanding that the variables τ l
t , R̄t, W̄t and K are defined through (4),

(5), (9) and (19). Notice that one of those variables is redundant, since
∑

i φt(i) = 1.
Correspondingly, one equation in (21) is linearly dependent from the others, since all rows
in Πt add up to one.

It should be stressed that the accuracy checks of Section 5 always refer to this discrete
model. The question whether the discrete model is a good approximation to the theoretical
model with a continuum of agents is beyond the scope of this paper.

2.5 Parameter Values and Functional Forms

The frequency of the model is quarterly. Standard values are used for most of the the
model parameters: β = 0.99, α = 1/3, δ = 0.025. I use log utility, U(c) = log(c).
For the technology shock I choose ρθ = 0.95 and σz = 0.007, which again are standard
values. I choose the tax shock as uncorrelated, ρτ = 0, to create unpredictable short-run
redistributions. Taxes fluctuate around zero, so τk∗ = 0. The variability of the tax shock
is set, rather arbitrarily, to στ = 0.01.

Individual productivity ξt,h is modeled to have only two realizations of equal probability.
The two realizations were chosen such that V ar(ξt,h) = 0.061/4, corresponding to the size
of the transitory shock in the RIP income specification of Guvenen (2009).

I use nk = 1000 grid points for the distribution of capital and a spline of order ns = 100
for the consumption function, so that the discrete model has around 1100 variables. The
linearized version of the model can then be solved exactly, for example by the method of
Sims (2001).

3 Approximate Aggregation in the Linearized Model

Before computing a higher-order solution of the model, which will be done in Section 4,
it is first necessary to compute the solution of the linearized model. This involves the
following steps:

1. Finding the steady state of the discretized model without aggregate shocks.

2A law of large numbers for economies with a continuum of agents, using standard analysis and measure
theory, is given in Podczeck (2009).
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2. Linearizing the model equations around the steady state.

3. Solving the complete linearized model, and/or solving the linearized model with a
reduced state vector (approximate state aggregation).

This has been explained in detail in Reiter (2009b), except for approximate aggregation,
which is the topic of the rest of this section.

3.1 The Linearized Model

In the discrete model of Section 2.4.3, the natural state variables are Φt, describing the
cross-sectional distribution of capital at the end of t, and the exogenous driving forces, θt

and τk
t . To make the notation more compact, we define zt ≡ (θt, τ

k
t )′ and ρz =

(

ρθ 0
0 ρτ

)

,

so that zt = ρzzt−1+εt Furthermore, we stack all state variables into the vector3 xt ≡

[

Φt

zt

]

.

We see from the household Euler equation (17) that private decisions depend on the aggre-
gate state only through the after tax factor prices. Those in turn only depend on aggregate
capital K and the exogenous driving forces θ and τk. We therefore introduce a vector of
statistics of the capital distribution, mt, which contains, as a minimum, information about
average capital K, but may contain additional variables. The aggregate state then enters
the Euler equation only through mt and zt, which we stack into the reduced state x̂t. We
assume that mt only contains linear functions of the distribution Φt:

x̂t ≡

[

mt

zt

]

= Hxt =

[

H11 0
0 I

] [

Φt

zt

]

(23)

for some given matrix H11. In the following, I will often refer to mt as “moments”, although
it may include statistics of the distribution that are not moments, as long as they are of
the linear form (23).

After linearization around the steady state, the discrete model can be written as

xt = Txt−1 +Ddt + Fεt (24a)

0 = Et−1 [Em1x̂t−1 + Ed1dt−1 + Em0x̂t + Ed0dt] (24b)

The matrices T , D, F , Em1, Em0, Ed1 and Ed0 are the result from the linearization. In (24),
all variables are defined as deviations from steady state.

The dynamic equation (24a) still contains the high-dimensional state vector xt (in the
theoretical model with a continuum of agents, the state vector is of infinite dimension).
The idea behind approximate aggregation is that economic agents base their decisions at

3A remark about the timing of variables. At the time when households make the decisions of period t,
the natural state variables are Φt−1, the cross-sectional distribution of capital at the end of t− 1, and the
exogenous vector zt. In the nonlinear part of the algorithm in Section 4, we therefore group Φt−1 and zt

together. In the linearized model, it is more convenient to use Φt and zt together.
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time t not on the full vector Φt, but only on the reduced state vector x̂t. Then we can
replace (24) by some equation defining the dynamics of x̂t, which has to be consistent with
(24) in some approximate sense. This will be discussed in Section 3.3. Before doing this,
we discuss how to choose the matrix H , and thereby the reduced state vector x̂.

3.2 Choosing the Reduced State Vector

The literature following Krusell and Smith (1998) has used the first cross-sectional moments
(typically one or two) of the distribution of capital Φt for the statistics mt. I will follow
this approach with one modification: for higher moments, I use the moments of log(k)
rather than k. Then we take the relevant part of H as

H11 =











k̄1 k̄2 . . . k̄nk

log(k̄1)
2 log(k̄2)

2 . . . log(k̄nk
)2

...
...

. . .
...

log(k̄1)
m log(k̄2)

m . . . log(k̄nk
)m











(25)

To avoid multi-collinearity problems, I orthogonalize the rows of H .
The use of cross-sectional moments as state variables is not optimal. The problem of the

household is to predict future values of aggregate capital, because this is what determines
factor prices in this model. Reiter (2009a) uses techniques from systems and control theory
to identify state vectors that are nearly optimal for that purpose. However, it is also shown
that in the Krusell/Smith model, cross-sectional moments perform reasonably well in this
respect. Therefore, I stick here to cross-sectional moments as state variables, in order to
simplify the presentation. The topic of the present paper is not the choice of the reduced
state vector, but rather the computation of higher-order approximations with a given,
medium sized state vector. For those models where it is not clear what a reasonable set of
statistics is, one should resort to the techniques developed in Reiter (2009a).

3.3 Approximate Aggregation

I will discuss two approaches to approximate aggregation. First, the well known method
of Krusell and Smith (1998). Second, the Proxy Distribution approach of Reiter (2010).
Then I will show that the two are equivalent in a linearized setting, but that the latter
approach generalizes more easily to higher-order approximations.

3.3.1 The Linear Krusell/Smith (KS) Algorithm

The idea of Krusell and Smith (1998) is to stipulate an aggregate law of motion for the
reduced state vector

x̂t = Âx̂t−1 + B̂εt (26)

Agents are assumed to solve their individual optimization problem assuming that the
aggregate state x̂t follows (26). The algorithm alternates between solving for the individual
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decision function given Â and B̂, and updating Â and B̂ from the individual decision
functions, until the two are consistent in an OLS sense. That means, if agents see a long
realization of the model economy and estimate the model (26)), they obtain the Â and B̂
that they have used in their optimization.

More formally, the KS algorithm solves the following fixed point problem:

1. Guess Â and B̂ where Â is asymptotically stable (that means, all eigenvalues are
smaller than 1 in absolute value).

2. Solve the system of equations (26) and (24b) to get the matrices DX̂ and DE of the
decision rule

dt = DX̂ x̂t−1 +DEεt (27)

3. Set A and B as

A = T +DDX̂H (28a)

B = F +DDE (28b)

and compute Σx as the unique symmetric solution of

Σx = AΣxA
′ +BΣεB

′ (29)

The numerical computation of Σx in cases where A is very large is discussed in Reiter
(2009a, Appendix B.3). Notice that the matrix A has to be asymptotically stable for
Σx to be defined. If it is not, the pair (Â, B̂) is not admissible.

4. Update Â and B̂ by the OLS regression

Â = HAΣxH
′ (HΣxH

′)
−1

(30a)

B̂ = HB (30b)

5. Iterate until the results in (30) are consistent with the guess in Step 1. This can be
done by a quasi-Newton algorithm over the elements of Â and B̂.

The household decision rule (27) implies the dynamic equation

xt = Axt−1 +Bεt (31)

with A and B defined by (28). Σx is the unconditional covariance matrix of the state xt

under this dynamics. Notice that, because of the linearity of the setup, the algorithm can
use the asymptotic formulas (30) for the OLS estimation (cf. Reiter (2009a, Appendix B.1)
for a derivation), and thereby avoid the use of simulation methods. It is therefore not
affected by sampling errors, unlike the original (nonlinear) algorithm of Krusell and Smith
(1998). In the choice of H , care must be taken that HΣxH

′ is regular and not too ill-
conditioned. This can be achieved by replacing every row in H by the residual of a
weighted least squares regression of this row on all earlier rows, with weighting matrix Σx.

Definition 1. A KS solution of the linearized model (24) consists of matrices
(Â, B̂,Σx, A,B,DX̂ , DE), where Â and A are asymptotically stable, such that (27) solves
the model (26),(24b) and Equations (28)–(30) are satisfied.
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3.3.2 The Proxy Distribution (PD) Method

The idea of the proxy distribution method is to assume that economic agents perceive a
law of motion for the reduced aggregate state x̂t that is exactly consistent with individual
behavior in those states where the cross-sectional distribution of capital is in some sense
normal or typical, conditional on the reduced state being equal to x̂t. To make this op-
erational, we need a “proxy distribution function”, which assigns to each reduced state a
representative cross sectional distribution Φpd (mt, zt). In a linear context, we can assume
that the proxy distribution function is linear, so that we can write

xt =

[

Φpd (mt, zt)
zt

]

=

[

S11 S12

0 I

] [

mt

zt

]

=

[

S11 S12

0 I

]

x̂t ≡ Sx̂t (32)

for suitable matrices S11, S12 and S. Premultiplying (24a) by H , and assuming (32) in
period t− 1, we get the following dynamic equation for x̂t:

x̂t = HTSx̂t−1 +HDdt +HFεt (33)

For given S, the reduced model consists of (33) and (24b). Notice that (33) will in general
not be satisfied for xt 6= Sx̂t.

The PD algorithm iterates over the matrix S, which defines the proxy distribution:

1. Guess S such that HS = I. This conditions means that the proxy distribution for
(mt, zt) really has moments mt.

2. Solve the system of equations (33) and (24b) to get the matrices DX̂ and DE of the
decision rule (27).

3. Define A and B as in (28) and Σx as in (29).

4. Update S by
S = ΣxH

′ [HΣxH
′]
−1

(34)

Return to Step 2 and iterate until convergence.

Again, matrix A in Step 3 is required to be asymptotically stable. The formula for updating
S in step 4 is such that Sx̂ is the expectation of x conditional on x̂, under the model (31)
with multivariate normal shocks.

Definition 2. A PD solution of the linearized model (24) consists of matrices
(S,Σx, A,B,DX̂ , DE), where A is asymptotically stable, such that (27) solves the model
(33),(24b) and Equations (28), (29) and (34) are satisfied.
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3.3.3 Comparison of KS and PD Algorithms

Proposition 1. To any set of matrices (Â, B̂,Σx, A,B,DX̂, DE) being a KS solution, there
is a matrix S such that (S,Σx, A,B,DX̂ , DE) is a PD solution.

Conversely, to any set of matrices (S,Σx, A,B,DX̂ , DE) being a PD solution, there are

matrices Â, B̂ such that (Â, B̂,Σx, A,B,DX̂ , DE) is a KS solution.

Proof. For a given KS solution, choose S by (34). For a given PD solution, choose Â and
B̂ by (30). Then we have to show that (26) is equivalent to (33). To do this, use (28a) in
(30a) to get

Â = H (T +DDX̂H)ΣxH
′ (HΣxH

′)
−1

= H
(

TΣxH
′ (HΣxH

′)
−1

+DDX̂

)

(35)

Then plug (34) and (27) into (33), and then use (30b) and (35). This gives

x̂t = H
[

TΣxH
′ (HΣxH

′)
−1

+DDX̂

]

x̂t−1 +HDDEεt +HFεt = Âx̂t−1 + B̂εt (36)

which is the same as (26).
Then the only thing that remains to be shown is that the stability of A, as required

in the definition of a PD solution, also implies the stability of Â, which is required in the
definition of a KS solution. This follows from (30a) and (29), as is shown in Reiter (2009a,
Appendix B.2).

The proposition shows that the two approaches are equivalent in the sense of having
the same solution. It is nevertheless worthwhile to study both. One reason is that they
lead to different algorithms to find this solution. In this respect, both methods have their
advantages. The advantage of the KS algorithm is that the objects over which the algorithm
iterates, namely Â and B̂, have only few elements, at least if dim(x̂) is small. This allows
to use efficient quasi-Newton algorithms to solve the nonlinear fixed point problem of the
algorithm. In contrast, the object S of the PD algorithm has so many elements that the
only feasible approach is some kind of fixed point iteration, as outlined in Section 3.3.2.
The good side of the PD approach is that the fixed point iteration in S converges in a few
iterations in many cases. Moreover, if we know the covariance matrix Σx from the exact
linearized solution, then we might use it in (34) and do not need to iterate on S at all. In
my experience, if mt is big enough so that it contains the information that is essential for
household decision making, then the choice of the proxy distribution (the choice of S) has
very little impact on the solution. In that case, we solve the model consisting of (33) and
(24b) in one step.

However, the main reason why we are interested in the PD approach is that it generalizes
more easily to the case of higher order solutions. If household decisions depend nonlinearly
on aggregate variables, the law of motion for x̂t (cf. (26)) should also be nonlinear, in order
to be at least approximately consistent with behavior at the micro level. This makes it
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difficult to apply the Krusell/Smith algorithm if the state vector has medium dimension
(10-20, say). Then the number of parameters in the aggregate law of motion is in the
range of 103 or more. Finding those parameters by an iterative process of guessing the
parameters, solving and simulating the model, and reestimating the law of motion, appears
very hard to do at the moment.

The proxy distribution method does not suffer from this problem, because it does
not stipulate an aggregate law of motion. We rather enforce exact compatibility between
individual and aggregate behavior at the proxy distributions. If shocks are small, it is
natural to use the proxy distribution function that we have obtained in the linearized
solution (cf. (34)). And again, if mt contains the relevant information for economic agents,
the exact choice S should make little difference. Given a proxy distribution function, the
model can be solved in one sweep of backward iterations. This has already been shown in
Reiter (2010), although the example there uses a very low-dimensional state vector. An
improved algorithm for this problem will be presented in Section 4.

4 Higher-Order Approximations

Higher-order approximation means that the decision function of economic agents, and
therefore the aggregate dynamics, depend nonlinearly on aggregate variables, in particular
on the vector that describes the cross-sectional distribution of capital. As already men-
tioned above, using the proxy distribution method, we do not specify an aggregate law of
motion. The only object that we approximate explicitly is the individual decision function
(here, the household saving function; in other applications, it may be the value function of
the agents). We will approximate the dependence of consumption on aggregate variables
by polynomials.

“Solving” the model of Section 2 then means finding a consumption function that
satisfies the aggregate consistency requirements at the proxy distributions. The nonlinear
part of the algorithm has the following steps:

1. Setting up the framework:

(a) Choose an approximation for the consumption function (Section 4.1).

(b) Choose a grid of end-of-period individual capital, for the solution of the house-
hold problem. (Section 4.2.1).

(c) Approximate the vector of aggregate shocks ε by a distribution with finite sup-
port, taking on values ε̄a with probability ωa(a), for a = 1, . . . , na. For the
results in Section 5, I choose independent 2-point distributions for both εθ,t and
ετ,t, giving na = 4.

(d) Choose a discrete grid in aggregate states x̂t (Section 4.2.2).

(e) Choose a proxy distribution function (Equ. (43)).
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2. Initialization: choose an initial estimate for the household savings function, DT (Sec-
tion 4.2.3).

3. Backward iteration: Given Dt, compute Dt−1, and iterate until convergence (Sec-
tion 4.3).

4.1 Approximation of the Savings Function

For given aggregate state, consumption is a nonlinear function of k, which is characterized
by the (ns +1)-vector dt, cf. Section 2.4.1. From the linearized solution, we get each of the
(ns + 1) components of dt as a linear function of the reduced aggregate state (mt−1, zt).

4

“Higher-order approximation” means that we approximate the components of dt as com-
plete polynomials in the aggregate states. In the examples below, I will consider quadratic
approximations. The generalization to higher orders is straightforward.

In the quadratic approximation, each polynomial has 1 + n + n(n + 1)/2 coefficients,
where n = dimm+dim z. The complete savings function is then given by the (ns +1)(1+
n+n(n+1)/2) coefficients of the (ns + 1) quadratic functions. We stack those coefficients
into the vector Dt. We denote by d(m, z;D) the decision vector d obtained from D by
evaluating the quadratic functions at the point (m, z).

To summarize, the interpolation of k(χ;m, z) can be seen as a two-stage process. First,
we compute all components of d by evaluating the polynomial approximations at (m, z).
Given d, we compute k(χ; d), the cubic spline interpolation defined in (16). Since c = χ−k,
the savings function k(χ;m, z) also defines a consumption function c(χ;m, z).

4.2 Setting up the Computations

4.2.1 The Grid in Individual Capital

To speed up the computations, we solve the individual problem using the endogenous grid
point method of Carroll (2006). For this, we choose a grid of end-of-period asset levels k̄l,
l = 1, . . . , nw with k̄1 = k. This should not be confused with the knot points of the savings
spline, which are in cash-on-hand χ, not in end-of-period capital k.

4.2.2 The Aggregate Grid

Although we consider small fluctuations around the steady state, technically I am not
using perturbation methods, but least squares projection methods (Judd 1998, p. 382). I
compute the equilibrium on a on a finite grid of points in the reduced aggregate state space.
Then the household savings function is fitted by least squares. The projection equations
are not solved simultaneously by a quasi-Newton method, because the household savings
function has too may parameters to do that. We rather solve it by backward iteration, cf.
Section 4.3.

4See Footnote 3 for the timing of the state variables.
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With more than one or two moments in the state vector, it is very difficult to find a
reasonable grid. For example, using a Cartesian grid in moments, one would have many grid
points that are very unusual, in the sense of having very low probability in the ergodic set
of the solution process. In earlier experiments, I found it very hard to compute numerically
precise results with a state space of more than 3 or 4 moments. The decisive improvement
comes from the use of the solution of the linearized model. The matrix Σx in (29) gives
the covariance matrix of the fluctuations of the full state vector xt around the steady state.
Then Σx̂ ≡ HΣxH

′ gives the covariance matrix of the reduced state vector x̂t. Choose S
such that SS ′ = Σx̂. Then construct a grid GMZ of (m, z)-values as follows:

1. Construct a grid on the unit ball in (dim(m)+dim(z))-dimensional Euclidean space.
Denote the points on this grid by ωi.

2. Transform this grid into a grid in (m, z)-space by (mi, zi) = Sωi.

The first step can be done in many ways; in the examples below, I was using all points
on the unit circle of the form

(0, . . . , 0,±1, 0, . . . , 0) or (0, . . . , 0,±
√

1/2, 0, . . . , 0,±
√

1/2, 0, . . . , 0)

This is not an optimal way to choose an aggregate grid. Most likely one could obtain more
precise results, for example by using Smolyak grids and polynomials (Malin, Krueger, and
Kubler 2007). I choose this very simple setup to make clear that the working of the method
does not depend on using sophisticated projection methods.

4.2.3 Initializing the Savings Function

From the linearized solution, we can get each of the (ns + 1) components of dt as a linear
function of the state vector mt−1, zt. This linear approximation can be used to initialize the
quadratic approximation, setting the coefficients of the quadratic components to zero. All
the coefficients are stacked into the vector DT . The subscript T here stands for a fictitious
last period where we start our iterations. Since the iteration step is interpreted as a step
backward in time, the next iteration will then be called DT−1, etc.

4.3 Backward Iteration Step

The basic idea behind iterating backward in time is the following. Assume we know the
decision function of the agents at time t + 1, which is given here by the household con-
sumption function Ĉ(χ; dt+1). Then we can, in principle, solve for the equilibrium at time
t separately for each point of the state space, (Φt−1, zt), and thereby obtain the decision
function of period t, Ĉ(χ; dt). With approximate aggregation, however, we work in the
lower-dimensional state space (mt−1, zt), which does not contain the complete information
about Φt−1. We solve this problem by choosing a proxy distribution Φt−1 = Φpd (mt−1, zt),
cf. Step 2 below, which should represent a “typical distribution” for the reduced aggregate
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state (mt−1, zt). Then we can solve for the equilibrium separately for each point in the grid
of reduced states.

So assume that after t iterations we are given the vector Dt, representing an approxi-
mation of the household savings function. The aim is to obtain a new approximation Dt−1

by iteration backward in time. Separately for each aggregate grid point (m̄, z̄) ∈ GMZ , do
the following:

1. For each point k̄l, l = 1, . . . , nw, on the grid of end-of-period assets, compute

El ≡ β
∑

j,a

ωξ(j)ωa(a)(1 + r(m̄, z̄(a)))uc

(

Ĉ(χlja; d(m̄, z̄(a);Dt))
)

(37)

where χlja is next period’s cash-on-hand,

χlja ≡ k̄l (1 + r(m̄, z̄(a))) +W(m̄, z̄(a))(1 − τ l(m̄, z̄(a))ξ̄j (38)

and
z̄(a) ≡ ρz z̄ + ε̄a (39)

El is the expectation of uc(ct+1), conditional on having assets k̄l at the end of period
t, and the aggregate state at the end of the period being (m̄, z̄). From the household
Euler equation, we then see that consumption at time t and cash-on-hand at time t
of this household are given by

c̄l = u−1

c [El] (40)

χ̄endog
l = k̄l + c̄l (41)

This gives us optimal consumption c̄l at the endogenous grid points of cash-on-hand,
χ̄endog

l , l = 1, . . . , nw. By construction, the critical level χc of the household equals

χ̄endog
0 . Consumption at the exogenous knot points χ̄t,i = χc + ¯̄χi can be obtained

by cubic spline interpolation from the
{

χ̄endog
l , c̄l

}

l=1,...,nw

. This then defines the

consumption function d̄ for all the households, conditional on the aggregate state at
the end of the period being (m̄, z̄).

2. Find the vector of past moments m̄−1 such that

H11Π
(

d̄;w(m̄−1, z̄), R(m̄−1, z̄)
)

Φpd (m̄−1, z̄) = m̄ (42)

Here Φpd (m̄−1, z̄) is defined as

Φpd (m̄−1, z̄) = Φ∗ + Σx−1
H ′

[

HΣx−1
H ′

]

−1

[

m̄−1 −m∗

z̄ − z∗

]

(43)

In (43), starred variables refer to steady state values. Σx−1
is the covariance matrix

of mt−1, zt, which is obtained from Σx by post-multiplying the part relating to the
covariance between mt−1 and zt by ρz. The interpretation of Φpd (m̄−1, z̄) is the
expected value of Φt−1 conditional on m̄−1 and z̄, under the dynamics generated
from the linearized solution of the model.
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From the above, we have obtained for each (m̄, z̄) ∈ GMZ , a d̄ and a m̄−1 such that d̄
characterizes the consumption function at (m̄−1, z̄). Then we regress each component of
the (ns + 1) components of d̄ on a quadratic function in the (m̄−1, z̄). The coefficients of
these regressions are stacked into the updated vector Dt−1.

4.4 Discussion of the Algorithm

4.4.1 The Endogenous Grid Point Method

For computational speed, the critical step is backward iteration. The key element that
makes the algorithm of Section 4.3 fast is the use of endogenous grids.

First, we apply the endogenous grid point method of Carroll (2006) in Step 1. It allows
to compute optimal consumption in the current period, given next period’s household
consumption function, without resorting to numerical optimization.

Second, a similar kind of trick is used to solve for equilibrium in Step 2 of Section 4.3.
Rather than fixing an m̄−1 and search for the m̄ that we go to, we fix an end-of-period
m̄ and search for the m̄−1 from which we reach m̄. Knowing the end-of-period aggregate
state (m̄, z̄), we compute the household consumption function of the same period. The
equilibrium problem (42) is then easy to solve, because it depends on m̄−1 only through
Φpd (m̄−1, z̄), which is a linear function, and through the effect of the interest rate on
Π

(

d̄;w(m̄−1, z̄), R(m̄−1, z̄)
)

. We do not have to recompute the household savings function
for each m̄−1.

4.4.2 The Arguments of the Consumption Function

If the state vector mt−1 contains all the relevant information about the distribution of
capital at the end of last period, Φt−1, then last period’s exogenous state zt−1 is irrelevant
for equilibrium in t, once we know zt. With approximate aggregation, mt−1 provides only
incomplete information about Φt−1, and zt−1 can still affect the equilibrium in t through the
additional information it may provide Φt−1. One might therefore consider several values
zt−1 that are possible predecessors of zt, and compute an equilibrium for each of those zt−1.
Then it is natural to write consumption at time t as a function of (Φt−1, zt−1, zt) rather
than (Φt−1, zt).

However, if the state mt−1 contains many variables and is well chosen, the effect of
zt−1 should be minimal. Then it appears better to average over possible zt−1 by using as
proxy distribution the expectation of Φt−1 conditional on mt−1 and zt. We denote this by
Φpd (mt−1, zt). Consumption is then approximated as a function of (Φt−1, zt). This is the
route that I have followed here.

4.4.3 The Role of the Linearized Solution

The solution to the linearized model is an essential ingredient in obtaining a higher-order
solution with medium-dimensional state vector. In the algorithm described above, the
linearized solution serves the following purposes:
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1. It gives a proxy distribution function, cf. (43).

2. The variance-covariance matrix of the state variables in the linearized model can be
used to construct a good aggregate grid, which means a grid that covers the part of
the state space in which the solution really lives (Section 4.2.2).

3. The solution from the linearized model will be a good starting point for higher-order
approximations, reducing the number of iteration steps in the nonlinear procedure.

4. To obtain higher order approximations of the solution, it is necessary to substantially
limit the number of state variables. Currently, one can handle up to about 20 state
variables for a second-order approximation on a PC, with the above method. For
many models, it is not clear what these state variables should be. Reiter (2009a)
shows how to choose a reduced state vector in an almost optimal way, based on
methods from linear control theory.

4.4.4 The Assumption of Small Shocks

Although the algorithm is based on projection methods, I see the approach as being in the
spirit of perturbation methods, solving the model in a small neighborhood of the steady
state without aggregate shocks. The assumption of very small shocks plays several roles:

1. It makes sure that the proxy distribution computed by (43) has positive entries.

2. The grid of points in aggregate state space is relevant, in the sense that they come
from a part of the state space that is frequently visited in the ergodic distribution.

3. The algorithm can be expected to converge fast, starting from household decision
function obtained in the linearized solution.

This list mirrors the list in Section 4.4.3 of the different roles of the linearized solution.
Small shocks guarantee that the information obtained from linearization is in fact useful.

4.5 Simulating the Model

Since we cannot compare the approximate solutions to the exact nonlinear solution, it is
necessary to find alternative accuracy checks. In the literature it is common to simulate
the model solution in two different ways and then check for consistency. This is often called
“simulation using aggregate law of motion” versus “simulation without using aggregate law
of motion” (Den Haan 2010). I will do something similar:

• Simulation following the cross-sectional distribution (abbreviated “SimD”)

In each period, we start from the aggregate state (Φt−1, zt), which we update as
follows.
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1. Set mt−1 = H11Φt−1 as in (23), and compute dt by interpolation, as described
in Section 4.1.

2. Compute Π (dt;wt, Rt) by (22) and set Φt by (21).

3. Draw random numbers ετ,t+1 and εθ,t+1 and update zt+1 using (3) and (8).

• Simulation using the proxy distribution (“Prox”)

Here, we start from the reduced aggregate state (mt−1, zt), which we update as fol-
lows.

1. Set Φt−1 = Φpd (mt−1, zt), as defined by (43).

2. Compute dt by interpolation, as described in Section 4.1.

3. Compute Π (dt;wt, Rt) by (22) and set Φt by (21). Set mt = H11Φt.

4. Draw random numbers ετ,t+1 and εθ,t+1 and update zt+1 using (3) and (8).

Simulation Prox is the same as SimD, except that in each period we replace Φt−1 by
the corresponding proxy distribution, Φpd (mt−1, zt). This corresponds to what is usually
called “simulation using aggregate law of motion”, because the economic agents implicitly
suppose that the distribution is given by the proxy distribution when they compute the
aggregate behavior of the economy. If the two types of simulation give almost the same
results, then the agents do not make a big mistake in using the proxy distribution when
computing their optimal behavior.

5 Numerical Results

The purpose of this section is to measure the precision of the solution that is obtained
by the second-order approximation described in Section 4. We measure precision in two
ways. First, we compare the outcome from the two types of simulation of the model, as
described in Section 4.5. Second, we compare the simulation outcomes using a low number
of moments to the outcome using 15 moments, which for this purpose can be considered
the “precise” solution.

We look at the precision of the impulse responses generated by the model, both to
technology and tax shocks. Each impulse is normalized to 10−4. This is a very small
shock, in the spirit of a perturbation solution. We will discuss below how things change
with a larger, more realistic, size of the shocks. Figure 1, Panel a), plots the impulse
response to a technology shock of the model with only one moment. Both the SimD- and
the Prox simulation are shown. Panel b) plots the error, first as difference between SimD
and Prox solutions (“DiffSim”), and then as the difference between the SimD- and the
solution with 15 moments (“Diff15Mom”). We see that the error is 2 orders of magnitude
smaller than the impulse response. This confirms the finding of Krusell-Smith, that even
the approximate model with only one moment gives a reasonably accurate solution.
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Panels c) and d) present the same statistics for the sum of the impulse responses to a
positive and a negative shock, both of absolute size 10−4. This represents the nonlinear
part of the impulse response: in an approximation that is linear in aggregate variables
(such as Reiter (2009b)), the sum would be identically zero. We see that here the error is
at least one order of magnitude smaller than the estimated response, so that we can say
that the nonlinear part is also modeled with reasonable accuracy.

Panels e)–h) present the same information for the second moment (which is not a state
variable in the one-moment solution). The accuracy is comparable to the one obtained for
the first moment.

Summary statistics on the accuracy of this solution are also presented in the first two
lines of Table 1, for predictions of the first four moments. Accuracy is measured as the
maximum absolute error relative to the maximum value of the impulse response. For each
solution, the first line refers to the difference between SimD and Prox solutions, the second
line to the difference to the 15-moments solution. The following lines of the table present
results for solutions with up to 15 moments. We see that accuracy can be increased by
three to four orders of magnitude, both for the positive impulse response and for the sum
of the positive and the negative impulse.

Figure 2 looks at the impulse response to a tax shock. It confirms what has already
been found in Reiter (2009b) and in Reiter (2009a), namely that the one-moment solution
is totally inadequate to capture the effect of this redistributional shock. Figures 3 and 4,
showing the 4-moments and 8-moments solutions, respectively, illustrate the gradual in-
crease in accuracy from using more moments. Table 1 shows a gain of three to five orders
of magnitude in the accuracy if we go to a 15-moments solution. Most of the time, results
for the prediction of the second to fourth moments are comparable in precision to the
prediction of mean capital.

The accuracy statistics of Table 1 essentially measure the aggregation error, the error
that results from using a small number of moments in the state vector, rather than a
high-dimensional representation of the cross-sectional distribution. We can compare this
to another interesting type of error, the linearization error, that arises if we use a linear
approximation, as in Reiter (2009b) and in Reiter (2009a). This error is effectively given
by the sum of the impulse responses (Panels c) and f) in each figure), which measures
the deviation from linearity in the impulse responses. Comparing the size of the impulse
response in Panel c) to the size of the error in the positive response, Panel b), we get an
idea about which type of error is more important. Obviously, this depends on the size of
the shock. If the shock gets scaled up by a factor of 100, so that it approximately equals
the empirical standard error of this shock, the positive impulse response, and its error, will
get scaled up by 100 as well. The sum of the responses, being a quadratic effect, will be
scaled up by 104. Taking this into account, we see from Figure 1) that the quadratic effect
in the response to a technology shocks has the same order of magnitude as the aggregation
error, already in the solution with one moment. For the tax shock, the aggregation error
is much more important. The quadratic effect has about the same size as the aggregation
error if we use a solution with 4 moments. (Panels b) and c) of Figure 3).

Figures 5) and 6) present similar statistics for the prediction of the third and fourth
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moment. It is interesting to see that the tax shock generates very persistent deviations in
second, third and fourth moments (notice that here the x-axis stretches to 1000 periods).
For the prediction of the positive shock, the 4-moments solution appears good enough. To
predict correctly the nonlinear part of the impulse response (sum of shocks), we need 8
moments.

Similarly, we could estimate the error from using a quadratic approximation, by com-
puting a cubic approximation. I leave this for future work that will consider large shocks.

6 Conclusions

The paper has shown a method to compute higher-order solutions of heterogeneous agent
models around the steady state. The method uses approximate aggregation, and enforces
consistency between individual policy rules and aggregate behavior on a selected grid of
aggregate states. The advantage of this method over existing approaches is that it can
handle a higher-dimensional state vector; in the numerical examples, up to 15 moments
were used to characterize the dynamics of the cross-sectional distribution. To make this
possible, it is crucial to exploit the information obtained from the linearization of the model
around the steady state. To speed up the computations, the backward induction steps use
endogenous grid point methods similar to Carroll (2006). As a result, a solution using 15
moments in the state vector can be obtained within a few minutes on a PC, using Matlab.

The method is in the spirit of perturbation methods, assuming small shocks. The same
techniques may be applied to handle the case of big shocks, which means solving the model
on a larger part of the state space. This needs a method to select proxy distributions in a
way that guarantees the non-negativity of the cross-sectional probability (or density) func-
tion. A simple way to do this is described in Reiter (2010). It may be worthwhile to apply
simulation methods more extensively, to learn about the ergodic set of the model, and to
obtain a better proxy distribution function for the nonlinear solution. This procedure will
probably be very application-specific, and should be done in the context of more interesting
examples than the stochastic growth model, which is rather easy to solve anyway. This is
left for future work.
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1st mom. 2nd mom. 3rd mom. 4th mom.
Shock #Moms pos. sum pos. sum pos. sum pos. sum

Tech 1 6.45e-3 7.14e-2 2.22e-2 1.59e-1 7.75e-2 4.31e-1 1.18e-1 5.65e-1
2.32e-3 3.18e-2 2.07e-3 2.83e-2 1.38e-3 1.75e-2 2.42e-3 1.20e-2

2 2.56e-3 2.93e-2 7.67e-3 4.29e-2 1.63e-2 8.11e-2 3.74e-2 1.19e-1
2.50e-3 4.80e-2 2.52e-3 4.25e-2 2.22e-3 2.60e-2 1.91e-3 1.77e-2

4 4.65e-4 5.66e-3 2.60e-3 2.04e-2 1.19e-2 7.70e-2 2.88e-2 1.47e-1
3.21e-3 7.22e-2 3.19e-3 6.38e-2 2.71e-3 3.84e-2 2.27e-3 2.58e-2

6 1.00e-4 4.54e-4 8.65e-5 6.50e-4 2.54e-4 1.51e-3 6.53e-4 2.33e-3
4.32e-5 2.08e-2 4.45e-5 1.86e-2 4.18e-5 1.15e-2 3.75e-5 7.72e-3

8 7.53e-6 2.57e-4 1.01e-5 1.58e-4 1.72e-5 2.02e-4 4.22e-5 2.32e-4
1.05e-5 3.34e-2 1.30e-5 2.94e-2 1.58e-5 1.74e-2 1.61e-5 1.14e-2

12 6.84e-7 9.51e-5 9.80e-7 9.81e-5 8.95e-7 1.20e-4 1.24e-6 2.09e-4
4.30e-6 2.24e-2 5.13e-6 1.98e-2 5.93e-6 1.18e-2 5.90e-6 7.72e-3

15 4.57e-7 7.50e-5 1.22e-6 1.10e-4 3.73e-7 9.19e-5 7.73e-7 1.67e-4
Tax 1 9.85e-1 9.17e-1 9.88e-1 9.26e-1 9.94e-1 9.38e-1 9.96e-1 9.58e-1

6.32e-1 3.82e-1 1.81e-1 1.94e-1 3.93e-2 9.98e-2 4.56e-2 1.45e-1
2 7.34e-1 8.67e-1 4.15e-1 5.53e-1 1.52e-1 1.20e+0 2.62e-1 1.38e+0

3.54e-1 3.47e-1 6.31e-2 1.75e-1 1.29e-2 8.07e-2 8.31e-3 6.06e-2
4 2.00e-1 4.89e-1 3.45e-2 7.88e-1 3.00e-2 2.03e+0 5.76e-2 3.44e+0

7.11e-2 1.81e-1 8.29e-3 7.73e-2 1.69e-3 3.56e-2 1.25e-3 2.30e-2
6 3.07e-2 1.67e-1 1.94e-3 1.76e-1 2.95e-3 6.93e-2 5.82e-3 1.47e-1

7.97e-3 5.38e-2 9.34e-4 1.91e-2 1.89e-4 8.41e-3 1.69e-4 4.98e-3
8 4.88e-3 6.22e-2 2.46e-4 1.73e-1 1.44e-4 9.69e-3 2.91e-4 1.99e-2

5.31e-4 2.61e-2 8.80e-5 9.42e-3 4.68e-5 4.29e-3 3.84e-5 4.51e-3
12 2.79e-4 7.71e-2 1.41e-4 1.74e-1 3.42e-6 1.10e-2 1.82e-6 1.39e-2

1.49e-4 2.80e-3 2.49e-5 8.30e-4 1.41e-5 4.48e-4 1.20e-5 5.61e-4
15 2.00e-4 7.41e-2 1.40e-4 1.70e-1 2.92e-6 6.92e-3 1.28e-6 1.09e-2

Table 1: Relative impulse response errors
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Figure 1: Response of distribution of capital to technology shock, 1 moment
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Figure 2: Response of distribution of capital to tax shock, 1 moment
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Figure 3: Response of distribution of capital to tax shock, 4 moments
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Figure 4: Response of distribution of capital to tax shock, 8 moments
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Figure 5: Response of distribution of capital to tax shock, 4 moments
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Figure 6: Response of distribution of capital to tax shock, 8 moments
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