
The Optimal Nonlinear Taxation of Capital in Models

With Uninsurable Income Risk∗

Michael Reiter, Universitat Pompeu Fabra, Barcelona

This version, August 2004

JEL Classification: H21, E62

Keywords: Optimal taxation, capital income taxation,

bequest taxation, redistribution

Abstract
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1 Introduction

Over the last years, the view that income on capital should not be taxed, because it distorts

the saving decision and results in sizeable welfare losses, gains more and more ground among

economists (Lucas, 1990, p.314 states the point forcefully by saying that eliminating capital

taxation is “... the largest genuinely free lunch I have seen in 25 years in this business,...”).

In contrast, actual economies continue to rely heavily on taxes on capital income and on

bequests (cf. Krusell, Quadrini and Rios-Rull, 1996, Table 1). Recent efforts in the US to

eliminate estate taxation are so far an exception. My interpretation of this fact is that the

majority of politicians and the wider public think that some kind of capital income taxation

is desirable on distributional grounds.

The famous results from the early literature on optimal dynamic taxation, showing that

the optimal tax on capital is zero in the long run, seem to suggest that the public opinion

on the distributional effects of capital taxation are misguided, or valid only in the short run.

Judd (1985) shows that the result holds even in a heterogenous agents model, where the

government cares only about workers, not capitalists. Chamley (1986), too, points out that

the zero tax result carries over to the case of heterogenous agents.

A more recent literature has shown that certain types of market incompleteness may lead

to different conclusions. Both Aiyagari (1995) and Chamley (2001) investigate a model where

households face borrowing constraints and uninsurable idiosyncratic risk, and find reasons

for a tax on capital income even in the long run.1 Aiyagari’s argument is based on the

overaccumulation of capital by liquidity constrained households, but Chamley (2001) makes

clear that what really matters is the possible role of capital taxation as a substitute for

the missing insurance markets, if consumption is positively correlated with wealth. What is

insurance ex ante is redistribution ex post, so this literature clearly attributes some role to

the taxation of capital for distributional reasons. Calibrated models studying non-optimal

tax reforms in incomplete market economies have come to similar conclusions. Both Garcia-

Mila, Marcet and Ventura (1995) and Domeij and Heathcote (2000) find that abolishing

capital taxes quickly makes a large part of the population worse off, despite an increase in

macroeconomic activity.

The present paper analyzes a model in the Aiyagari/Chamley framework. It is now

well understood that this framework calls for some (perhaps very small) positive taxation of

capital in the long run. The present paper goes beyond this literature in several respects.

It gives both a qualitative and quantitative analysis of a fully nonlinear capital tax struc-

1There are reasons other than distributional concerns why the optimal tax on capital might fail to be zero

in steady state, for example the existence of untaxable production factors (Correia 1996), or the incomplete

taxation of pure rents (Jones, Manuelli and Rossi 1997).
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ture. Furthermore, it deals not just with steady state taxation, but considers the optimal

time-varying tax structure under full commitment, including both a short-run and long-run

analysis. In some numerical examples, the quantitative welfare effects of optimal capital

taxation in this setting are explored. It is shown how the nonlinear tax structure depends on

the characteristics of the income distribution, in particular on the shape of the upper tail.

In the recent literature, one can find different approaches to nonlinear optimal dynamic

taxation. Costa and Werning (2001) and Kapicka (2002) study optimal nonlinear income

taxation in setups that give rise to a stationary optimal tax structure. Conesa and Krueger

(2002) determine the optimal nonlinear income tax in a rich model calibrated to the US

economy. The tax structure is invariant over time, and comes from a three-parameter family.

Saez (2002) deals with nonlinear capital taxation; the paper allows for time-varying tax rates,

but uses more restrictive forms of nonlinear taxes. The model is deterministic, and the focus

is on the redistribution of previously accumulated wealth, not on the insurance aspect of

capital taxation that is a main ingredient of the present paper.

The strand of literature that is closest to this paper in the sense that it studies time-

varying nonlinear tax schedules is the so-called “Mirrlees approach” to dynamic taxation

(Golosov, Kocherlakota and Tsyvinski, 2003,Kocherlakota, 2004, Albanesi and Sleet, 2004).

These papers solve for the first best allocation under an informational constraint (for example,

that the government cannot observe individual abilities), and afterwards ask what is the tax

structure that implements this optimal allocation. In contrast, the present paper follows the

“Ramsey approach”, looking for a second best under constraints on the tax system that do

not necessarily stem from information constraints. The Mirrlees approach can more easily

handle complex tax structures (the above mentioned papers deal with optimal nonlinear

income and capital tax simultaneously, while I am looking at capital taxation only), since

it is easier to solve for a constrained optimum rather than solving the first order conditions

of a second best problem. On the other hand, that approach forces us to consider a tax

structure that is general enough to implement the constrained optimum. This means, for

example, that one cannot ask how much we would gain by going from the optimal linear to

the optimal nonlinear tax, which is one of the issues addressed in the present paper.

The plan of the paper is as follows. Section 2 presents the model. Section 3 discusses

the technical problems that have to be solved to find a solution to the optimal tax problem,

and states the solution concept that will be used. Theoretical results on the optimal tax

structure are presented in Section 4, while Section 5 provides some numerical illustrations.

Section 6 concludes. The appendices contain the derivation of the analytical results, and a

brief description of the numerical methods.
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2 The model

2.1 Overview of the model

The model analyzed here is similar to Aiyagari (1995). I have simplified the model as much

as possible, to make the optimal nonlinear tax problem tractable. In particular, I assume

that labor supply is exogenous and that the economy works with a linear technology in labor

and capital.

A key feature of the model is that households (dynasties) face each period an idiosyncratic

labor income shock, which is the only source of uncertainty in the model. Asset markets are

incomplete: the income shock cannot be insured, and households face a liquidity constraint

in the form that their assets cannot become negative. In this environment, a Utilitarian

government imposes taxes on capital, and redistributes the revenues lump sum. There is

no public consumption, and capital taxes only serve for redistribution. In period 0, the

government can commit to a sequence of time varying and nonlinear tax schedules on capital.

The tax function is nonlinear as in Mirrlees (1971). The assumption of full commitment is

not made for realism, but in order to give a normative analysis. We know that without

government commitment, capital taxes can be very high in a political equilibrium (Klein and

Rı́os-Rull 2001).

Besides capital taxes, no other taxes appear in this model. Since labor supply is inelastic,

labor income taxes would be be non-distortionary, and we can therefore interpret labor income

in this model as after-tax income.

Let me now discuss some of the more important modeling choices.

2.1.1 Credit constraints vs. bequest constraints

The formal model of this paper can be interpreted either as a model of infinite lives with bor-

rowing constraints, or a model of altruistic non-overlapping generations with a non-negativity

constraint on bequests. The qualitative results of Section 4 are equally valid for both cases,

but for the quantitative exploration in Section 5 we have to decide on an interpretation. For

the present purpose, I find the latter one more attractive, for several reasons.

First, studying nonlinear tax schedules seems especially important for bequest taxes. In

many countries, marginal taxes on bequests are more graduated than other taxes. In the

US, for example, marginal estate tax rates in 2000 vary between 18 and 60 percent (for

transfers between parents and children, more for other transfers), while the top marginal

federal income tax rate was less than 40 percent, and the top rate on capital gains was about

20 percent. This may reflect the particular role of bequests for equity, since unequal bequests

mean that people face different starting positions in life.
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The second reason is theoretical. Borrowing constraints arise endogenously in an econ-

omy, for example through asymmetric information and limited enforceability of contracts.

Modeling this constraint as exogenous is not innocuous and may distort the conclusions of

the analysis (Krueger and Perri, 1999; cf. also Yotsuzuka, 1987 on the question of Ricardian

Equivalence under borrowing constraints). In contrast, the non-negativity of bequests is a

legal restriction that can be considered exogenous. Leaving bequests is a unilateral act, and

while it is possible to make gifts, one cannot simply take money away from other people, not

even from one’s own children.

The third reason is technical. Interpreting the model period as a generation, the numerical

examples can be computed based on a relatively small number of periods. The numerical

solution technique that I employ in Section 5 would not be feasible, given my computer

resources, if the model period were one year.

Of course it is true that the simple model analyzed here omits many of the specific

characteristics of the bequest decision, for example that bequests have to be split among

several children, or that parents already have a lot of information about the income realization

of their children at the time when they leave the bequest (both aspects are analyzed in Cremer

and Pestieau, 2001). But a similar critique could be made about the interpretation of the

model as capital accumulation over life, since the model omits life cycle features, which have

been shown to have important implications for the optimal taxation of capital (Erosa and

Gervais 2002).

A critical feature of this analysis is that bequests are modeled as purely altruistic. Differ-

ent assumptions on bequest motives (accidental bequests, joy of giving, strategic bequests)

may have very different policy implications. Nevertheless, altruistic bequests have received

so much attention in the literature that they deserve a separate analysis.

2.1.2 Linear production function

Like Chamley (2001), Saez (2002) and much of the public finance literature on optimal

taxation, I assume a linear production function, so that the wage and the before tax interest

rate are constant. This assumption simplifies the analysis and is not crucial for the qualitative

results. Quantitatively, however, it may bias the results in the direction of a higher tax rate

on capital, since we omit the negative effect on wages (and on the income distribution) from

the reduction in the capital stock that is induced by the capital tax.

To guarantee a steady state in the absence of taxation, we have to make the following

assumption on the before tax interest rate r and the discount factor β (Aiyagari 1995):
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Assumption 1. The interest rate is smaller than the rate of time preference:

β(1 + r) < 1 (1)

2.1.3 Public debt

The model does not allow government debt, for three reasons. First, under Assumption 1,

there is no steady state if the government can borrow money freely. In a steady state,

the current value Lagrange multiplier ν of the budget constraint is constant. Next periods

revenues are therefore valued today at βν. Since the government borrows at the before

tax interest rate r, Equ. (1) implies that the government always wants to borrow more

money. A steady state is only possible if the government is borrowing constrained, just as

the individuals.

Second, the focus of the paper is on the distributional role of capital taxation, not on

the role of government debt in a world where people are liquidity constrained. If we allow

public debt, the two effects get mixed up (see also the introduction of Chamley (2001) on

this issue).

The third reason is empirical relevance. Especially from a long-run point of view, where

government debt redistributes between generations, the recent political opposition to un-

funded pension systems and public debt in general indicates that there are limits to what

the government can do. It is convenient to set this limit to zero.

2.2 Households

I now turn to a formal description of the model. For the reasons explained above, I adopt the

interpretation of the model as a sequence of non-overlapping generations, where capital is

accumulated through bequests. The economy is then populated by a continuum of dynasties

with constant mass 1. Each generation lives for only one period, but is altruistically linked

to future generations. A member of generation t splits its resources into consumption Ct

and bequests Bt so as to maximize (in this section we write all variables without household

indices)

Et

∞
∑

s=t

βs−tU(Cs) (2a)

subject to a budget constraint and a non-negativity constraint on bequests:

Bt = (1 + r) (Bt−1 + zt − Ct − Tt (Bt)) (2b)

Bt ≥ 0 (2c)

The household has inherited the amount Bt−1 from the last generation, and is endowed with

one unit of labor, which it supplies inelastically. While there is no aggregate uncertainty
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in this model, individual real labor productivity (or labor income) zt is stochastic. The

household has to pay a tax Tt (Bt) on the bequests it leaves. For convenience, taxes are

written here as a function of after-tax bequests Bt, not of before-tax savings, which are given

by St = Bt−1 + zt − Ct. In the optimum, it will turn out that Tt(0) is negative, which can

then be interpreted as a lump sum transfer. Implicit in (2b) is the assumption that labor

income fluctuations cannot be insured.

In the following, we will abbreviate the available private resources of a household of

generation t (its capital) by

kt ≡ Bt−1 + zt (3)

Capital kt is the only individual state variable. The optimal bequest and consumption

function of the household with capital k are denoted by Bt [k] and Ct [k], respectively. They

are related by the budget constraint (2b). For notational clarity, function arguments in

brackets always refer to the household with capital k.

We make the following assumptions on labor productivity zt:

Assumption 2. i) The distribution of zt is identical and independent over time and

across households;

ii) it has bounded support (z, z) with z > 0;

iii) it has a density π(z) which is continuously differentiable on <.

iv) The density π(z) is weakly decreasing in a neighborhood of (z).

Note that Part iv) of the assumption is quite natural, given that π(z) = 0 by continuity.

It is made to exclude certain types of oscillatory behavior at the upper end of the support,

which is used in the proof of Proposition 2.

We make standard assumptions on the utility function:

Assumption 3. i) The utility function U(C) is strictly increasing, strictly concave and

twice continuously differentiable.

ii) limc→0 U ′(c) = ∞

For technical convenience, we assume that the initial capital distribution is bounded (later

assumptions will guarantee that it stays bounded):

Assumption 4. i) The initial cross-sectional distribution of capital is given and has

bounded support, with a supremum value K̄0.

ii) The distribution is continuous with a density denoted by φ0 [k].
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From our assumptions on the income distribution, it follows immediately that the cross-

sectional distributions for periods t = 1, 2, . . . are continuous. We denote their density by

φt [k].

2.3 The problem of the government

The government maximizes a Utilitarian welfare function, that means, an unweighted sum

of individual utilities. The only fiscal instrument available to the government is a tax on

capital (bequests) Tt(B). We assume Tt(B) to be continuous and piecewise smooth, in the

sense of being twice continuously differentiable everywhere except possibly at a countable

number of values of b. We can represent the tax function then by a lump sum subsidy,

−Tt(0), and a marginal tax function T ′
t (B). Tax rates can change over time, and in period 0

the government can fully commit to a fiscal policy Θ = Tt(0), T1(0), . . . ; T ′
0 (B) , T ′

1 (B) , . . ..

The government faces the period-by-period budget constraint

0 =

∫

<

φt [k] Tt (Bt [k]) dk (4)

Two aspects of this formulation deserve notice. First, the revenues of the tax on bequests are

redistributed lump sum within the generation that pays the tax; the government does not

redistribute between generations. This is important, since Ricardian Equivalence does not

hold in this model, and it might contribute to the strong negative effect of taxation on capital

formation that we will observe later. Second, the government cannot levy a tax on initial

capital (which would be a lump sum tax). The first tax it can impose is on the bequests

of the first generation, which is already distortionary. It is therefore not necessary to place

binding upper limits on the tax in the first period, unlike in many other models of capital

taxation (cf. for example Chamley, 1986).

To make sure that the value function of the household is bounded (cf. Lemma 2), it is

convenient to impose some very loose upper and lower bounds on taxes:

Condition 1. There exist constants τ and τ̄ such that for all t,

Tt(0) ≤ τ̄ < z (5a)

Tt (Bt [k]) ≥ −τ

∫

<

kφt [k] dk (5b)

These constraints should not be binding (as will be confirmed in the numerical simu-

lations), but I do not find a way to proof this. The upper bound guarantees a minimum

consumption level for all households. This constraint is innocuous, since we expect Tt(0) to

be negative. The lower bound on taxes (upper bound on subsidies) prevents the government

from creating an unbounded cross-sectional wealth distribution through unbounded subsidies
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to the richest people. Since we have a continuum of households, the government could theo-

retically do this, although such a policy seems to make no sense for a Utilitarian government

under concave utility.

Definition 1. By K̄t we denote the supremum of the support of the cross-sectional distri-

bution φt [k].

By ¯̄Kt we denote the maximum amount of capital that a household can accumulate at t,

i.e., the kt that is achieved by starting from K̄0, always drawing the highest possible income

shock z, and consuming zero in every period.

Clearly, both K̄t and ¯̄Kt are contingent on tax policy.

Based on Condition 1, we can prove (cf. Appendix A) the following

Lemma 1. a) For each t, the cross-sectional distribution has bounded support.

b) For any β̂ < 1
1+r

,

lim
t→∞

β̂t ¯̄Kt = 0 (6)

We are now ready to state the problem of the government:

Program P1: for t = 0, . . . ,∞, choose transfers Tt(0), functions of marginal tax rates

T ′
t (B), cross-sectional distributions φt [k] and bequest functions Bt [k] so as to maximize

∞
∑

t=0

βt

∫

<

φt [k] U

(

k −
Bt [k]

(1 + r)
− Tt (Bt [k])

)

dk (7)

subject to the following constraints:

i) the budget constraint (4) and Condition 1.

ii) the cross-sectional distributions of wealth holdings satisfy the dynamic equation

φt+1 [k] =

∫

<

φt [j] π (k − Bt [j]) dj, ∀t (8)

with given initial distribution φ0 [k].

iii) The marginal tax functions are piecewise smooth in the sense defined above.

iv) The bequest functions Bt [k] represent the utility maximizing choices of households,

given the households’ initial level of capital, their history of shocks and the sequence

of policy parameters. (More precisely, the function Bt [k] can be any selection of the

optimal bequest correspondence of the households.)
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3 Solving the optimal tax problem

The aim of this section is to treat the technical issues in the solution of the problem of the

government, and to describe the solution concept. The proofs of all lemmas can be found in

Appendix A.

3.1 Solution of the household problem

Let us define Θt as the announced policy from time period t onwards. Then the solution to the

household (sub)problem starting at time t can be characterized by the usual value function

vt (k; Θt), which is a function of the household’s capital stock at time t and is conditional

on Θt. For notational convenience, the dependence on Θt will usually be suppressed, so we

write vt(k). We think of vt(k) as defined on k ∈ (z, ¯̄Kt), which contains the support of φt [k].

Lemma 2. i) For all t and all k ∈ (z, ¯̄Kt), the value function vt(k) is bounded and strictly

increasing in k.

ii)

lim
t→∞

βtv( ¯̄Kt) = 0 (9)

iii) For each t, the value function is differentiable almost everywhere and can be represented

as

vt(k) = vt(z) +

∫ k

z

v′t(j)dj (10)

The value function satisfies the Bellman equation

vt (k; Θt) = max
b

{Ut (k, b; Θt) + β Et vt+1 (b + z; Θt+1)} (11)

The optimal choices of b that solve the rhs of (11) are collected in the bequest correspondence

B∗
t [k]. Using the value function we can now establish the following lemma:

Lemma 3. For any sequence of tax policies that allows a solution of the household problem,

the optimal bequest correspondence B∗
t [k] is non-decreasing in k for all t, that means,

k0 < k1, b0 ∈ B∗
t [k0] , b1 ∈ B∗

t [k1] ⇒ b0 ≤ b1 (12)

Note that this monotonicity implies that B∗
t [k] is single-valued almost everywhere.

3.2 Rewriting the government problem

In order to make the government problem P1 tractable, it will be necessary to work with

the first order conditions of the household problem, as is commonly done in optimal taxation
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problems. With nonlinear tax functions, we face the problem that the budget set of the

household is not concave if marginal tax rates are decreasing in some regions, which will be

the case in most of the applications below. Then the first order conditions do not guarantee

that the household is at the optimal point. This is a serious problem. We know from Mirrlees

(1986) that in this case not even the derivation of the necessary first order conditions of the

tax problem is valid.

To solve this problem, we can first think of the government as choosing a sequence of

household value functions and bequest functions which have the properties established in

Lemma 2, and together satisfy the Bellman equation (11). We know that this is sufficient

for a household optimum. In a second step, we restrict the government policy in a way

that the household problem is “not too non-concave”, such that the first order conditions

of the household are sufficient for an optimum. Exploiting a single-crossing property of the

household indifference curves, it is possible to show that this restriction is innocuous in the

sense that it does not affect the real choices available to the government. Following this line

of argument, we can show (cf. Lemma 4) that problem P1 can be replaced by the following,

more tractable problem:

Program P2: For t = 0, . . . ,∞, choose piecewise smooth tax functions T (b) : (0,∞) →

<, u.h.c. bequest correspondences B∗
t [k] : (z, ¯̄Kt) → (0,∞) bequest functions Bt [k] with

Bt [k] ∈ B∗
t [k], household value functions vt(k) : (z, ¯̄Kt) → < with limt→∞ βt ¯̄Kt = 0 and

cross-sectional distribution functions φt [k] so as to maximize (7) subject to

i)–iii) of Program P1

iv) the household first order conditions

U ′

(

k −
b

1 + r
− T (b)

)

≥ β
1 + r

1 + (1 + r)T ′
t+ (b)

∫

<

v′t+1(b + z)π(z)dz (13a)

U ′

(

k −
b

1 + r
− T (b)

)

≤ β
1 + r

1 + (1 + r)T ′
t− (b)

∫

<

v′t+1(b + z)π(z)dz (13b)

hold for all b ∈ B∗
t [k]. Furthermore,

v′t(k) = U ′

(

k −
Bt [k]

1 + r
− T (Bt [k])

)

, a.e. (14)

vt(z) = U

(

z −
Bt [z]

1 + r
− T (Bt [z])

)

+ β

∫

<

vt+1(Bt [z] + z)π(z)dz (15)

Equs. (13) take into account that the tax function is not necessarily differentiable, but has

a left and right derivative, T ′
t+ (b) and T ′

t− (b), respectively. The envelope condition (14)

is standard. Equ. (15) is the HJB equation at the minimal capital level z, and serves to

make sure that the government really chooses the value function, not just its derivative. The

expression vt(k) should always be understood as an abbreviation for the rhs of (10).
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The following lemma is proven in Appendix A.1.

Lemma 4. To any solution of program P1, there is a solution of program P2 (and vice

versa) that is equivalent in the sense that it induces the same bequest behavior for almost all

households, raises the same tax revenue and yields the same value of the government objective

function.

The term “almost all” means that the set of households for which this is not true is of

measure zero w.r.t. to the initial distribution of capital.

3.3 A Lagrangian approach to the government problem

Both the theoretical analysis of Section 4 and the numerical results in Section 5 will focus

on the following class of solutions to P2:

Definition 2. A smooth interior solution of Program P2 is a solution where, for all t, the

household bequest correspondence is single-valued on the support of φt [k], which can then

be written as a function Bt [k], and where this bequest function is continuously differentiable

with B′
t [k] > 0 for all k with Bt [k] > 0.

In particular, these solutions exclude two types of “anomalous” behavior:

1. tax functions with kinks; this would lead to a bequest function where a range of house-

holds with different capital stocks are bunched at the same (positive) level of bequests;

2. discontinuous bequest functions.

One could allow for these cases in the derivation of the optimal policy, but it would further

complicate the already lengthy derivations, and it turns out that the additional generality

is not needed. For the numerical analysis, the restriction to smooth interior solutions is

innocuous, since they can approximate the more general solutions arbitrarily well. Kinks

or discontinuities should be detected in the process of the numerical solution, since they

would generate bequest functions with a derivative that tends either to zero or to infinity.

In all the numerical experiments undertaken so far, this has never been the case. This is

also what one would expect a priori. Bunching should not be optimal (except at a zero level

of bequests, where the constraints (2c) kicks in), because the government should be able to

increase welfare by making some of the bunched households with higher capital stock consume

less (bequest more), and some with lower capital stock, which have a higher marginal utility

of consumption, consume more. In the case of discontinuities, households which differ in

their capital stock only by an ε, differ in their consumption by a discrete amount. Here
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again, averaging the consumption level between the two types of households should increase

aggregate welfare. Unfortunately, I cannot prove this formally.2

The analysis will be based on the necessary conditions for a smooth interior solution,

which will be derived using the following Lagrangian

L =

∞
∑

t=0

βt

{

∫

<

φt [k]

[

U (Ct [k]) + ξt[k]Bt [k] + ζt[k] (−v′t(k) + U ′ (Ct [k]))

+ µt[k]

(

−U ′ (Ct [k]) + βR̄t[k]

∫

<

vt+1 (Bt [k] + z) π(z)dz

)

+ λt[k]

(

−φt [k] +

∫

<

φt−1 [j] π (k − Bt−1 [j]) dj

)

]

dk

+ νt

(

Tt(0) +

∫

<

φt [k]

∫ k

0

T ′
t (Bt [j]) B′

t [j]dj dk

)

+ χt

(

−vt(z) + U (Ct [z])) + β

∫

<

vt+1(Bt [z] + z)π(z)dz

)

}

(16)

In (16),

• The variables ξt[k], ζt[k], µt[k], λt[k], νt and χt are Lagrange multipliers.

• The after tax interest factor R̄t[k] as is an abbreviation for

R̄t[k] =
1 + r

1 + (1 + r)T ′
t (Bt [k])

(17)

• Total taxes have been rewritten in terms of marginal taxes. Since the taxes are a

differentiable function of B, and B is differentiable in k by the definition of a smooth

interior solution, the taxes to be paid by a household with capital k are given by

Tt (Bt [k]) =

∫ Bt[k]

0

T ′
t (b)db =

∫ k

0

T ′
t (Bt [j]) B′

t [j]dj (18)

• The expression Ct [k] is an abbreviation for

Ct [k] ≡ k −
Bt [k]

(1 + r)
− Tt (Bt [k]) (19)

= k −
Bt [k]

(1 + r)
−

∫ k

0

T ′
t (Bt [j]) B′

t [j]dj (20)

• In a smooth interior solution, the household Euler equation is

U ′ (Ct [k]) ≥ βR̄t[k]

∫

<

U ′ (Ct+1 [Bt [k] + z]) π(z)dz (21)

with equality if Bt [k] > 0. Note that the Lagrange multiplier µt[k] is equal to zero for

those k where Bt [k] = 0.

2The main difficulty lies in the fact that any change in taxes at time t leads to behavioral responses in

earlier periods that have external effects due to their impact on tax revenues.
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We are looking for stationary points of the Lagrangian:

Definition 3. A stationary point of the Lagrangian (16), is defined as sequences of func-

tions T ′
t (b), Bt [k], φt [k], λt[k], µt[k], and ξt[k], and real numbers νt and Tt(0) such that, for

each t,

1. The derivative of L w.r.t. Tt(0) is zero.

2. The derivative of L w.r.t. all feasible variations δT ′
t (b), δBt [k] and δφt [k] is equal to

zero.

3. The Kuhn-Tucker conditions

0 = µt[k]

(

−U ′
t[k] + βR̄t[t + 1

∫

<

U ′
t+1[Bt [k] + z]π(z)dz

)

(22a)

0 = ξt[k]Bt [k] , Bt [k] , ξt[k] ≥ 0, (22b)

hold together with Equs. (4), (8), (14), (15) and (21).

The following lemma justifies the Lagrangian approach. A sketch of a proof is given in

Appendix A.2.

Lemma 5. A smooth interior solution of Program P2 is a stationary point of the Lagrangian

(16).

4 Theoretical results

This section presents some analytical results on the structure of optimal nonlinear capital

taxation, which can be interpreted as extensions of results in the theory of optimal nonlinear

income taxation. These results are independent of which interpretation of the model (non-

overlapping generations or infinite lives) we adopt.

4.1 The optimality conditions and their interpretation

Proposition 1. A smooth interior solution of Program P2 satisfies

∫

<

φt [k] Wt[k]dk = νt (23)

νtB
′
t [k]

∫ ∞

k

φt [j]dj = B′
t [k]

∫ ∞

k

φt [j]Wt[j]dj + φt [k] µt[k]R̄t[k]U ′
t [k] (24)

for t = 0, 1, . . ., where

Wt[k] ≡ U ′
t [k] + λ∗

t [k] +
U ′′

t [k]

φt [k]

∂Ct [k]

∂k

∫

<

φt−1 [j]µt−1[j]R̄t−1[j]π(k − Bt−1 [j])dj (25)

14



and

φt [k] µt[k] = −φt [k]
λ∗

t [k]

U ′′
t [k]

+
B′

t [k]

R̄t[k]

∫

<

φt−1 [j] R̄t−1[j]µt−1[j]π(k − Bt−1 [j])dj (26)

λ∗
t [k] = νtT

′
t (Bt [k]) B′

t [k] + βB′
t [k]

∫

<

λ∗
t+1[j]π (j − Bt [k]) dj (27)

with initial value

µ−1[k] = 0 (28)

where

λ∗
t [k] ≡ λ′

t[k] − U ′
t [k] (29)

Equs. (24) and (26)–(27) hold at all points where Bt [k] is differentiable (all points except

max {k : Bt [k] = 0}).

Proof. See Appendix B.1.2.

To understand the optimality conditions in Proposition 1, let us start with a discussion

of the Lagrange multipliers λ and µ. The multiplier λt[k] of the dynamic equation for the

distribution of capital (8) gives the shadow value of having one more household with capital

k. Its derivative λ′
t[k] gives the value of having a household with capital k + 1 rather than

k, which can be interpreted as the marginal social value of one more unit of capital given

to a household with capital k. The variable λ∗
t [k] in (29) is then the marginal social value

of one unit of capital in excess of its private marginal utility. This variable satisfies the

integral equation (27), which has a straightforward interpretation. λ∗
t [k] is equal to the

current marginal tax contribution of the additional capital, valued with the shadow price of

public revenues νt, plus the marginal contribution of the descendents that obtain additional

bequests of B′
t [k]. This contribution is the product of B′

t [k] and the expected marginal

contribution of an additional unit of capital. The variable λ∗
t [k] is positive if marginal tax

rates are positive.

To understand the multiplier µt[k] of the household Euler equation (21), note that in

the optimum, the government would like households to save more, since this generates more

tax revenues (assuming that marginal tax rates are positive). That means, the government

would like to increase U ′
t [k] relative to U ′

t+1[Bt [k] + z]. It is prevented from doing so by

the constraint −U ′
t[k] + βR̄t[k]

∫

<
U ′[Bt [k] + z]π(z)dz = 0, which is therefore binding for

the government (not for the individual!) in the direction ≥. The Lagrange multiplier µt[k]

will therefore be positive. The multiplier satisfies the integral equation (26), which has the

following interpretation. Some algebra shows that a relaxation of the constraint −U ′
t[k] +

β(1 + r̄t)
∫

<
U ′[Bt [k] + z]π(z)dz ≥ 0 by one unit allows the government to increase Bt [k] by

−
B′

t
[k]

U ′′

t
[k] units. The same effect on bequests would be brought about by an increase in capital

15



of −1
U ′′

t
[k] units, and the value of the increase in revenues is therefore equal to −

λ∗

t
[k]

U ′′

t
[k] ; this

explains the first term on the rhs of (26). Furthermore, this increase in bequests decreases

consumption in t by
−B′

t
[k]

R̄t[k]U ′′

t
[k]

units, which changes the Euler equation of time t− 1 by
B′

t
[k]

R̄t[k]

units. This change affects all those households in period t− 1 that leave a bequest such that

they will end up with capital k in period t with positive probability. This is captured by the

second term on the rhs of (26).

An interpretation of (28) is given in Marcet and Marimon (1998). In period t, government

policy is constrained by the commitments made in period 0. This constraint works through

the household Euler equation, and its effect is captured by the Lagrange multiplier µt. In

period 0, the government can choose all parameters optimally, without being constrained by

past promises, and the multiplier is therefore equal to 0.

Understanding the Lagrange multipliers, we can now interpret the expression Wt[k] in

(25) as the net social marginal valuation of income, a concept often used in the theory of

optimal income taxation. It is the sum of three terms. First, the private marginal utility

of income, which is equal to U ′
t [k] by the envelope theorem for the household. Second, the

social value that it creates through current and future tax payments, equal to λ∗
t [k]. Third,

the effect that it generates on the decisions of the household in earlier periods through the

Euler equation of t − 1. This is captured by the last term in (25), since the additional unit

of income changes the Euler equation of t − 1 by U ′′
t [k]∂Ct[k]

∂k
units.

Equ. (23) is the first order condition for an increase in the lump sum subsidy. It says

that, in the optimum, the marginal value ν of public funds is equal to the average net

social marginal valuation of income. This is completely analogous to results from the income

taxation literature.

Equ. (24) is the first order condition related to an increase of the marginal tax rate

T ′
t (Bt [k]) that applies to household k. This increases by B′ [k] the tax burden of all house-

holds that bequeath more then B [k] (cf. the representation of taxes at the rhs of Equ. (18)).

Therefore B′ [k]
∫∞

k
φ [j]dj measures the resulting increase in revenue, holding household

behavior fixed. Multiplying this by νt we obtain the lhs of (24), which measures the marginal

value of the increased revenues. On the rhs of (24), the first term measures the reduction in

social welfare from the reduced net income of households, while the second term measures

the marginal excess burden that comes from the additional distortion of the household Euler

equation.

Equ. (24) is still rather opaque; to obtain a better insight into the determinants of the

optimal marginal tax rate, we can rewrite it in the following way (see Appendix B.2 for the
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derivation):

T ′
t (Bt [k])

1
1+r

+ T ′
t (Bt [k])

=

(

1 −
Avek

t (W )

Ave0
t (W )

)

1 − ΦB [Bt [k]]

Bt [k]φB(Bt [k])

1

ηBs

R [t, k]

−
βR̄t[k]

νt

λ̂t+1[k] +
U ′′

t [k]

νtφt [k]
µ̂t−1[k] (30)

Here φB and ΦB are the cross-sectional density and distribution function of bequests, respec-

tively; ηBs

R [t, k] is defined as the compensated elasticity of bequests w.r.t. the interest rate

factor R̄t[k];

Avek
t (W ) ≡

∫ ∞

k

φ [j] Wt[j]dj /

∫ ∞

k

φ [j]dj (31)

is the average marginal valuation of income for households above capital level k; and finally

λ̂t+1[k] ≡

∫

<

λ∗
t+1[j]π (j − Bt [k]) dj (32a)

µ̂t−1[k] ≡

∫

<

φt−1 [j] R̄t−1[j]µt−1[j]π(k − Bt−1 [j])dj (32b)

The first line of the rhs of (30) is very similar to formulas derived in the optimal income tax

literature (cf. Atkinson, 1995, Equ. (3.12)). It says that the marginal tax rate of a household

with capital k is the higher

1. the lower is the average social marginal value of income Avek
t (W ) for people with capital

above k, compared to the average Ave0
t (W ).

We can expect social marginal utility to be decreasing in k, and this term reflects the

desirable “distribution effect” of increasing the marginal bequest tax and handing the

revenues back as lump sum transfers.

2. the higher is the fraction of people with capital above k (who pay more tax if we increase

the marginal tax rate at k)

3. the lower is the amount of bequests Bt [k] φ̇b(Bt [k]) that is affected by the distortion

from the increase in the marginal tax

4. the lower is the compensated elasticity of bequests w.r.t. the after tax interest rate.

The first item expresses a redistributive concern, the last three items are about efficiency.

In addition to these effects, which already appear in static models, there are two dynamic

determinants of the marginal tax function, which are captured in the second line of (30):

1. The term in λ̂t+1[k] says that the optimal marginal tax of a household today is the

lower the higher is the expected marginal contribution of this household to future tax

revenues. This tells you to leave more money to people who will pay back more of it

in the future.
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2. The term in µ̂t−1[k] says that the optimal tax at k in t is lower if the Euler equation of

those households in t−1 that are dynamically linked to k in t is more distorted (means

that µt−1[j] is higher). From this effect, the optimal tax rate tends to decrease over

time, since µ̂ starts at 0 and builds up over time.

4.2 No distortion at the top

Based on Proposition 1, we can now derive an analogue to the well known “no-distortion-at-

the-top” result from the theory of nonlinear income taxation (see for example Myles, 1995,

p.151).

Proposition 2. In a smooth interior solution with Bt

[

K̄t

]

> 0, we have µt[K̄t] = 0.

The interesting aspect of this result is that, in a dynamic context, it is not the marginal

tax rate that is set to zero at the top3, but the Lagrange multiplier related to the household

Euler equation, which measures the distortion. The marginal tax rate is probably negative.

Consider, for example, the following

Corollary 1. If λ̂1[K̄0] > 0 then T ′
0

(

K̄0

)

< 0.

To see this, combine (27) and (26) to get

µt[k] = −
νtT

′
t (Bt [k]) B′

t [k]

U ′′
t [k]

−
βB′

t [k]

U ′′
t [k]

λ̂t+1[k] +
B′

t [k]

φt [k] R̄t[k]
µ̂t−1[k] (33)

and observe that µ̂−1[k] = 0 (recall the definitions of λ̂ and µ̂ in (32)).

The corollary says that the top household in period 0 faces a negative marginal tax if its

expected future marginal tax contribution, as measured by λ̂1[K̄0], is positive. This is likely

to be the case, since the distribution is mixing every period, and the same household will not

be at the top of the wealth distribution in future periods.

5 Some numerical illustrations

5.1 Parameter values and functional forms

The utility function is of the CRRA form

U(C) =
C1−γ − 1

1 − γ
(34)

with γ taking the values 1 or 2.

3To be precise, what one can show is that lim
k→K̄t

µt[k] = 0, while Equ. (26) does not pin down µt[K̄t],

because φt

ˆ

K̄t

˜

= 0. The distinction is irrelevant, since there is no mass at K̄t.
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For the lifetime income process, I consider two different distributions. The first is the

lognormal distribution, truncated at the lower end at the point “mean minus 4 standard

deviations”, where income is very close to zero. To this distribution I add a fixed income

of 1, so that the minimum income is approximately 1, which is about 12 percent of median

income in the baseline specification with a Gini coefficient of 0.3. The lognormal distribution

is the one most intensively studied in the optimal taxation literature. However, recent work

by Diamond (1998) and Saez (2001) has made clear that the choice of distribution drives

to a large extent the results of optimal income tax exercises. The fact that the lognormal

distribution has very thin tails is mainly responsible for the result that optimal marginal tax

rates are usually found to decline for higher incomes. The upper tail of the American income

distribution can be better described by a Pareto distribution, with exponential parameter of

about 2 (Saez 2001). The second distribution I consider is therefore a mixed distribution,

where the lower 9 deciles follow a lognormal distribution, while the upper decile is Paretian.

To obtain a density function that is twice differentiable (as is required in the calculations

above), the distribution was smoothed in the region around the switch-point.

For both distributions, I investigated different levels of inequality, with Gini coefficients

between 0.3 and 0.4. With the mixed distribution described above, a Gini coefficient of 0.3

implies a variance of log income of about 0.23, which is close to the most recent estimates for

log lifetime income in Haider (2001, Table 5), obtained from PSID data. It is well known that

the type of models that we analyze do not generate enough wealth inequality. To partially

compensate for that, I am also considering a Gini coefficient of 0.4. The variance of log

income then increases to 0.47.4

The before tax interest rate was set to 1.023630, to be understood as the return over 30

years with an annual rate of 2.36 percent, which is the average real return on 1 year US

treasury bonds over 1959-1998. The discount factor β was set to 0.429, which conforms to a

value of 0.972 annually. With this parameter choice, the fraction of households leaving zero

bequests (in the long run under nonlinear taxation) varies between 10 and 50 percent for the

different parameter constellations considered. In the data, this number is about 30 percent.

(Menchik and David 1983, Table 3.1)).

In the numerical application, I have to approximate the nonlinear tax schedule by a

flexible functional form. The results below are based on tax functions that have 11 free

parameters for every period. More details are given in Appendix C.

4Diaz-Gimenez, Quadrini and Rios-Rull (1997, Table 1) find a Gini coefficient of 0.63 for recent US annual

earnings. The coefficient for lifetime earnings should be considerably smaller.
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5.2 Results

5.2.1 Average tax rates and welfare gains

Table 1 provides a number of summary statistics on optimal tax rates and their effects on

aggregate variables. For each parameter constellation, the first line gives the results for the

linear tax, the second line for the nonlinear tax.

I consider specification 1) as the benchmark. The “M” in the column titled “φ” indicates

that the income distribution is of the “mixed type”, the lower part lognormal, the upper part

Paretian. γ = 1 means we have log-utility, the Gini of labor income is set to 0.3, and the

income distribution was truncated at the upper end such that the maximal income is 73.8

times the median income. In the initial period (t = 0), the linear tax on bequests is 23.03

percent, while the nonlinear tax is on average 22.40 percent. Both regimes give rise to lump

sum subsidies of about 7.3 percent of median income. Marginal taxes are progressive in the

sense that the correlation ρT ′,B between bequests and the marginal tax rate is positive. Nine

generations later (t = 9), the last period that we simulate, tax rates are much lower, and

the subsidy has decreased to about 2 percent of median income. This reflects the higher

efficiency costs of taxes that are announced a long time in advance, since households have

more time to evade it by reducing savings (cf. the effect of µ̂ in Formula (30)).

In the next column, ∆v reports the total welfare gain for the Utilitarian government.

It is expressed in the table in terms of an equivalent proportional, permanent change in

consumption of all households. In the benchmark case, the welfare gain is equivalent to

about 2 percent of consumption. This is a significant, but not a huge gain. It may be

surprising the the welfare gain of the nonlinear tax is only slightly higher than that of the

linear tax. We will look at this in more detail later.

Since the bequest tax is redistributive, it is clear that some households will gain and

others loose. The column “Frac Gain” in the table reports the percentage of households

that gains from having the optimal tax rather than no tax, in the sense of having a higher

value function. Notice that, for any parameter constellation, all tax regimes (no tax, linear

tax, nonlinear tax) start from the same initial distribution, which corresponds to the steady

state distribution under the no tax regime. In the initial period, we see that the fraction of

households that gain is much higher under the nonlinear than under the linear tax, despite

the fact that the average welfare gains are so close. This makes clear that if we ask for the

possible political support of a bequest tax, the availability of nonlinear taxes may be much

more important than the Utilitarian welfare criterion suggests.

The column t = 1 reports the same statistic for the following period. Notice that now we

have to compare welfare across different wealth distributions that arise endogenously in the
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t=0 t=9 Frac Gain Frac B0 = 0

φ γ Gini z Y max

Y med

T
B

M
Y med ρT ′,B

T
B

M
Y med ρT ′,B ∆v t = 0 t = 1 no tax tax ∆ ln k

1) M 1 0.3 73.8 23.03 7.34 0.00 7.98 2.19 0.00 1.96 38.1 2.8e-08 33.0 61.9 -0.24

22.40 7.26 0.58 6.90 1.92 0.75 2.03 54.2 5.4e-06 33.0 45.8 -0.24

2) M 1 0.3 17.7 17.41 5.72 0.00 6.58 1.84 0.00 1.33 47.5 2.9e-06 30.7 52.5 -0.21

17.38 5.73 0.46 6.08 1.70 0.65 1.36 55.0 2.1e-06 30.7 45.0 -0.21

3) M 2 0.3 53.9 54.15 42.11 0.00 21.55 6.92 0.00 10.98 79.9 2.0e-09 9.1 20.1 -0.60

56.07 43.18 0.60 18.22 6.44 0.20 11.31 65.0 1.4e-06 9.1 9.8 -0.57

4) M 2 0.3 17.7 49.46 37.47 0.00 17.19 6.25 0.00 8.97 83.6 5.3e-09 8.2 16.4 -0.53

48.17 36.91 -0.05 17.21 6.25 -0.26 8.98 85.2 1.2e-08 8.3 14.8 -0.53

5) M 1 0.4 23.6 20.79 12.89 0.00 8.24 3.91 0.00 2.69 68.0 1.2e-05 17.3 32.0 -0.32

20.86 12.97 -0.80 8.39 3.94 -0.35 2.71 65.7 2.3e-05 17.3 34.3 -0.32

6) L 1 0.3 11.3 10.89 3.56 0.00 4.59 1.31 0.00 0.64 63.2 4.9e-06 24.9 36.8 -0.15

11.21 3.68 -0.90 5.14 1.46 -0.82 0.65 58.8 9.4e-06 24.9 41.2 -0.15

first line of each parameter constellation: linear tax; second line: nonlinear tax

φ: type of income distribution; “L”:lognormal; “M”: mixed lognormal and Paretian

γ: risk aversion parameter; Gini z: Gini coefficient of income distribution, Y max/Y med: maximum over median income

T/B: total tax over total bequests; M/Y med: subsidy in percent of median income

ρT ′,B : correlation coefficient between bequests and marginal tax rate

∆v: welfare gain of taxation

Frac Gain: percentage of households that gain in tax vs. no-tax regime; cf. text for details

Frac B0 = 0: percentage of households in t = 0 leaving zero bequests, in tax and no-tax regime

∆ ln k: reduction in log of average capital, tax compared to no-tax regime

Table 1: Results for numerical examples

2
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different regimes. Therefore, we do not compare households with the same level of capital

k in both regimes, but households that occupy the same position in the wealth distribution

(for example, we compare the household in the fifth wealth percentile under the no-tax and

under the nonlinear tax regime).5 Recall that we do not compare instantaneous utility,

but the value function of the household as of time t = 1. With this criterion, from the

second period onwards practically nobody gains! We can understand this result if we see

that the high tax rates in the initial period strongly reduce the total amount of bequests.

The columns “Frac B0 = 0” compare the fraction of households that leave zero bequests,

under the no-tax and the tax regimes, in t = 0. The introduction of the tax raises this

number from 33 to 62 and 46 percent in the linear and nonlinear case, respectively. From

a distributional perspective, the fact that now there are many more households who inherit

nothing, more than compensates the lump sum subsidy that is financed by the tax. Second,

this extreme result is also a consequence of the fact that in this model the lower part of the

income distribution is lognormal. If there were more people bunched at zero market income

and zero bequests, only depending on subsidies, these would benefit from the introduction

of the tax also in later periods. In any case, it seems that only the very poorest households

in the economy still benefit from the tax in the second period. Finally, the column “∆ ln k”

reports the difference in the log of average wealth between the tax and the no-tax regime, at

t = 9. We see that the decrease in the capital stock accumulates to more than 20 percent in

the long run.

The parameter constellation 2) differs from 1) in the parameter Y max

Y med , the ratio of maximal

to median income. While log-linear and Pareto distributions are unbounded, for numerical

reasons they are truncated at a certain point. When Y max

Y med changes, the standard deviation

of income is adjusted such that the same Gini coefficient is maintained. The result is a con-

siderable reduction in average tax rates, and the advantage of nonlinear over linear taxation

is even further reduced.

This last conclusion is borne out even more clearly by the comparison of cases 3) and

4), where the risk aversion parameter γ is increased to 2. The gain of nonlinear taxation is

non-negligible if the upper tail of the distribution is long, but it is again very low if the tail

is short. Tax rates are generally much higher, even in the long run. As a consequence of the

high tax rates, the capital stock shrinks by almost 50 percent in the long run.

In Case 5), the degree of inequality is increased to a Gini coefficient of 0.4. As one would

expect, tax rates and the welfare gain go somewhat up compared to Case 2), but tax rates

5Notice that this is not equivalent to following the dynasties across different regimes. For example, a

household that received zero inheritance and got a rather bad income shock may be at point 0.01 in the

income distribution in the no-tax regime, while under the linear tax the same household may end up at

position 0.02, since there are now many more households that got no inheritance.
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go down compared to Case 1) with the longer tail. The final Case 6 considers a lognormal

distribution, which is a distribution with a very thin tail. Both tax rates and welfare gain

drop strongly.

In sum, the optimal average tax rate is increasing in the level of inequality, as measured

by the Gini coefficient of labor income, and in the level of risk aversion (γ). Most importantly,

taxes are higher if the tail of the income distribution is longer (keeping the Gini coefficient

constant). While the total welfare gain can be substantial, it is a temporary phenomenon.

The gain accrues almost exclusively to the first generation. These results apply both to the

linear and the nonlinear tax.

5.2.2 The shape of the tax function

From the graphs of the optimal nonlinear tax rates in Fig. 1, we see that the marginal tax

rate drops to low or negative levels for very high bequests, which is broadly consistent with

the no-distortion-at-the-top results of Section 4.2. That tax rates are not always negative at

the top is probably due to numerical problems: in the numerical computations we are using

a finite parameterization of the tax function. Particularly at the upper end, there are so few

people out there that it is very difficult to pin down the marginal tax rates precisely.

For low and middle level of bequests, the marginal tax rate is either increasing or U-shaped

in cases where the income distribution has a Pareto upper tail, while it is decreasing with a

lognormal distribution. This is very similar to the results in the income taxation literature

(Saez 2001), and can be understood from Equ. (30). It is driven by the term 1−ΦB [Bt[k]]
Bt[k]φB(Bt[k]) ,

which is constant if Bt [k] follows a Paretian distribution, while it decreases rapidly in the

lognormal case. A thin tail of the income distribution induces a thin tail of the bequest

distribution, and this causes a falling optimal marginal rate.

To see how many people are affected by these tax rates, Fig. 2 displays the same functions

as Fig. 1, but now there are not the bequests on the x-axis, but the cumulative distribution

of households. The value at x = 0.9 means the marginal tax rate faced by the household that

is at the 90-th percentile of the wealth distribution. We see that in the Paretian case, only

a small, sometimes negligible, number of households are in the range of falling tax rates.

Fig. 3 should shed light on two questions: Why is the welfare gain of nonlinear taxation

only minimally higher than that of linear taxation? Have we really exhausted the possible

gains from nonlinear taxation by our parametric approximation, which contains 11 param-

eters in every period? The figure displays the residual of the first order condition (24) of

the government problem, in t = 0. On the x-axis we now have capital k, expressed as a

fraction of the upper bound K̄0. The range is truncated above 0.7, because the residual is

indistinguishable from 0 for higher values of k. The reason is that the cross-sectional density
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Figure 1: Optimal marginal tax rates
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Cumulative density, Model 5
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Figure 2: Optimal marginal tax rates
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Figure 3: First order condition, benchmark model, t = 0

φ0 [k] enters the first order condition, and φ0 [k] is extremely small for very high levels of

capital. By definition, this residual is identically zero for the fully nonlinear optimal tax (if

it is computed exactly). For the optimal linear tax, it is straightforward to show6 that the

integral of this function over k must be zero. What does this picture tell us about welfare

gains? To a quadratic approximation, the value loss from having chosen a suboptimal policy

is a quadratic function of the first order residuals.7 In other words, the welfare gain that

can be realized by going from a suboptimal solution (no tax, linear tax, imprecisely calcu-

lated nonlinear tax) to the fully optimal tax system is a quadratic function of the residuals

displayed in Fig. 3. Since the residuals of the optimal linear tax are almost one order of

magnitude smaller than the residuals with zero tax, the welfare gain left after linear taxation

is almost two orders of magnitude smaller than the gain starting from no tax, which is in line

with the numbers in Table 1 Regarding the accuracy of the computed optimal nonlinear tax,

we see that it does not give a zero residual everywhere, but it seems to exhaust the biggest

part of the gain that is left by the linear tax.

6We first consider (73) where we take δT ′

t
[j] as constant over j (the case of an optimal linear tax). Then

we integrate the first order condition (24) over k, and we see that the two equations are equivalent, after a

simple change of variables.
7Minimizing f(x) ≡ 1

2
x′Qx over the vector x, for positive definite matrix Q, the value loss f(x) − f(0) is

proportional to R(x)′Q−1R(x), a quadratic function of the first order residual R(x) ≡ Qx.
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6 Conclusions

This paper has analyzed the role of capital (or bequest) taxation for the purpose of redistribu-

tion. The theoretical analysis has established strong analogies between the optimal nonlinear

taxation of capital and the well known static theory of optimal nonlinear income taxation,

including a non-distortion-at-the-top result.

The quantitative analysis has used a calibration of the model with a time period of 30

years. This was interpreted as a model of non-overlapping generations, where savings come

in the form of bequests. It has been found that optimal bequest tax rates are high in the

long run only if the risk aversion coefficient is higher than 1. The welfare gain may then be

substantial, but in all the examples considered, the welfare gain goes almost exclusively to

members of the first generation. From the second generation on, the decrease in inheritances

more than compensates the welfare gains from redistributional taxes, for all but a tiny number

of very poor households. The degree of income inequality has an impact on average tax rates

and even more so on the shape of the optimal tax function, but what counts is the upper

tail of the distribution, not so much overall inequality measures such as the Gini coefficient.

As in optimal income taxation, marginal tax rates are decreasing if income is lognormally

distributed, while they are increasing or U-shaped if the upper tail is Paretian.

In all model specifications, the welfare gain from using the optimal nonlinear tax versus

the optimal linear tax is much smaller than the gain from the linear tax versus no tax. This

conclusion may have to be modified in models that give a more accurate description of the

very upper tail of the income and wealth distribution (in the simulations, I truncated the

income process at maximally 75 times median income, for numerical reasons). In general, the

model of this paper is very stylized, and future work should test the numerical conclusions

by considering richer models; to make the analysis tractable, one would have to use more

restricted forms of nonlinear taxation, such as fewer brackets and less variation over time.

The aim of the present analysis was to study the mechanism of optimal nonlinear dynamic

taxation, to show what optimal tax functions look like and what determines their character-

istics. The results should also be helpful in future work to find the right simplifications to

analyze richer models.
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Appendix

A Proofs for Section 3

Proof of Lemma 1. a) Plugging Equ. (5b) into the budget constraint (2b), the claim follows

from Assumptions 2ii) and 4ii).

To show b), define mk,t ≡
∫

<
kφt [k] dk and mz ≡

∫

<
zπ(z)dz. The aggregate resource

constraint (obtained from the government budget constraint and the sum of household budget

constraints) then implies mk,t ≤ (1 + r)mk,t−1 + mz. Defining m̃k,t ≡ (1 + r)−tmk,t, we get

m̃k,t ≤ m̃k,t−1 + (1 + r)−tmz, therefore m̃k,t ≤ m̃k,0 +
∑t

i=1(1 + r)−imz. Straightforward

algebra gives mk,t ≤ (1 + r)t(mk,0 + mz/r).

The household budget constraint together with the last inequality then implies

K̄t+1 ≤ (1 + r)K̄t + z + τ [(1 + r)t(mk,0 + mz/r)]

A similar argument as above shows that K̄t ≤ (1 + r)t
(

K̄0 + t(τ (mk,0 + mz/r) + z)
)

The

claim then follows immediately.

Proof of Lemma 2. Strict monotonicity follows from standard arguments. That vt(0) > −∞

follows directly from Equ. (5a)

To see that vt(K̄t) < ∞, take any β̂ with β ≤ β̂ ≤ 1/(1 + r). Lemma 1 shows that

limt→∞ β̂tK̄t = 0. Together with Equ. (5b) this implies that limt→∞ β̂tc̄t = 0, where c̄t is

the maximal possible level of consumption in t. Because of the concavity of U(.), this implies

lim
t→∞

β̂tU(c̄t) ≤ lim
t→∞

β̂t [U(z) + U ′(z)(c̄t − z)] = 0 (35)

From (35), for any ε > 0 there exists tε s.t. β̂tU(c̄t) ≤ ε for all t ≥ tε. Then, for any t,

v(K̄t) ≤

tε−1
∑

i=0

βiU(c̄t+i) +

∞
∑

i=tε

βiU(c̄t+i) ≤

tε−1
∑

i=0

βiU(c̄t+i) + β̂−t

∞
∑

i=tε

(

β

β̂

)i

β̂t+iU(c̄t+i)

≤

tε−1
∑

i=0

βiU(c̄t+i) + β̂−t

∞
∑

i=tε

(

β

β̂

)i

ε ≤

tε−1
∑

i=0

βiU(c̄t+i) + β̂−t ε

1 − β/β̂
≤ ∞

ii) For any ε > 0, define tε as above. Then, for any t ≥ tε,

βtv
(

K̄t

)

≤ βt

∞
∑

i=0

βiU(c̄t+i) =

∞
∑

i=t

βiU(c̄i) =

∞
∑

i=t

(

β

β̂

)i

β̂iU(c̄i) ≤

∞
∑

i=t

(

β

β̂

)i

ε ≤
ε

1 − β/β̂

Since such a tε can be found for any ε, the claim follows.
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iii) From the boundedness of vt+1(k) and Assumption 3ii), optimal consumption is bounded

away from zero at each t. Denote the infimum of consumption at t by ct > 0. Then we have,

for all k and all ε ≤ ct/2 that vt(k)−vt(k− ε) ≤ U(Ct [k])−U(Ct [k]− ε) ≤ U(ct)−U(ct− ε).

This implies that vt(k) is Lipschitz continuous with constant (U(ct) − U(ct − ε)) /ε. The

claim then follows from Foran (1991, Theorem (8.17)).

Proof of Lemma 3. Any bk ∈ B∗
t [k] satisfies

bk = argmax
b

{

U

(

k −
b

(1 + r)
− Tt(b)

)

+ β

∫

<

vt+1(b + z)π(z)dz

}

(36)

Now assume that k1 > k0, and b1 < b0, where b0 ∈ B∗
t [k0] and b1 ∈ B∗

t [k1]. Define

∆v ≡ β
∫

<
vt+1(b0 + z) − vt+1(b1 + z)π(z)dz. This implies

U

(

k1 −
b1

(1 + r)
− Tt(b1)

)

− U

(

k1 −
b0

(1 + r)
− Tt(b0)

)

≥ ∆v

U

(

k0 −
b1

(1 + r)
− Tt(b1)

)

− U

(

k0 −
b0

(1 + r)
− Tt(b0)

)

≤ ∆v

This contradicts the concavity of U .

A.1 Admissible tax functions

To proof Lemma 4, we first show that we can restrict the government’s choice of tax functions

to a class of functions that we call “envelope tax functions”, because they are essentially

the envelope of the households indifference curves in (B, T )-space. Then we show that for

these functions, the conditions Equs. (13)–(15) are sufficient for a solution of the household

problem, which is the core part of Lemma 4.

The indifference curves in (B, T )-space are defined by the indirect utility function Vt(B, T ; k, Θt+1):

Vt(B, T ; k, Θt+1) ≡ U(k − B/(1 + r) − T ) + β Et vt+1 (B + z; Θt+1) (37)

Given next period’s value function, it expresses the value that a household with capital k

reaches in period t as a function of bequests B and taxes paid T . Everything is conditional

on future policy Θt+1, which is suppressed as an argument in the following. The slope

It (B, T ; k) of this indifference curve is given as

It (B, T ; k) =
dT

dB
=

β Et v′t+1 (B + z)

U ′(k − B/(1 + r) − T )
−

1

1 + r
(38)

which can be positive or negative.8 The following derivations will make essential use of the

fact that the indifference curves fulfill a single crossing condition. The indifference curve in

8Note that v′
t+1

(B + z) may not exist at a countable number of points, but the expectation is still well

defined, because it is an integral w.r.t. to a continuous distribution.
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a given point is the steeper the higher is k, because

∂It (B, T ; k)

∂k
= −

U ′′(k − B/(1 + r) − T )

[U ′(k − B/(1 + r) − T )]2
β Et v′t+1 (B + z) > 0 (39)

using the strict monotonicity of the value function (Lemma 2i).

We are now ready to define envelope tax functions, which basically eliminate the “irrele-

vant parts” of the tax function.

Definition 4. Take as given a series of piecewise smooth tax functions T 0
t (b) : (0,∞) → <.

Denote by B0
t [k] : (z, ¯̄Kt) → (0,∞) the optimal bequest correspondence under T 0

t (k), and

by v0
t (k) : (z, ¯̄Kt) → < the corresponding household value function. Define RB

t as the range

of B0
t [k].

For every t, the envelope tax function T env
t (b) relating to T 0

t (b) is defined as follows:

1. If b ∈ RB
t , then T env

t (b) = T 0
t (b).

2. For b ≤ binf
t , where binf

t ≡ inf b̃

{

b̃ ∈ RB
t

}

, define T env
t (b) ≡ T 0

t

(

binf
t

)

− 1
1+r

(b− binf
t ).

This construction means that bequests are fully subsidized up to binf
t , so that a lower

level of b is not optimal for any household, nor are the first order conditions of any

household satisfied at those levels.

3. If b ≥ bsup
t , where bsup

t ≡ supb̃

{

b̃ ∈ RB
t

}

, define T env
t (b) ≡ T 0

t (bsup
t ) + κ(b − bsup

t ),

where the constant κ is chosen big enough so that bequests above K̄t are prohibitively

expensive, that means, those levels are neither optimal nor do they satisfy the first

order conditions for any household. Since all the relevant variables are bounded, such

a κ can always be found.

4. If binf
t < b < bsup

t and b /∈ RB
t , define b0 ≡ supb̃∈RB

t

{b̃ < b} and

b1 ≡ inf b̃∈RB
t

{b̃ > b}. From the continuity of the utility and the value function, it

is clear that there is exactly one k0 such that a household with level k0 is indifferent

between b0 and b1. Define T env
t (b) by the level of taxes such that household k0 is

indifferent between b and b0, that means,

U
(

k − b
1+r

− T env
t (b)

)

+
∫

<
vt+1(b + z)π(z)dz =

U
(

k − b0

1+r
− T env

t

(

b0
)

)

+
∫

<
vt+1(b

0 + z)π(z)dz.

What is important here is that the single-crossing condition (39) guarantees that the

switch from T 0
t (b) to T env

t (b) does not affect the bequests of any household other than

k0. For any b ∈ (b0, b1), households with k > k0 prefer b1 over b, while those with

k < k0 prefer b0 over b.

30



Furthermore, this construction guarantees that the bequest correspondence under the

envelope tax function is u.h.c., because at all jump points, the household with capital

k0 is indifferent between all bequest levels in (b0, b1).

This construction is illustrated in Figure 4. The solid line gives the original tax func-

Bequests B

Ta
xe

s T

binf bsupb0 b1

T0

Tenv

Figure 4: Admissible tax functions

tion T 0
t (b). The envelope tax function T env

t (b) coincides with with T 0
t (b), except for three

intervals. For b ∈ (b0, b1), the new tax function is given by the indifference curve (dashed

line) of the household that is indifferent between b0 and b1. For b < binf
t , it is given by the

dashed line that is steeper than the original line. Note that the graph covers the case that

the household with the lowest capital still leaves a positive bequest (which is very unlikely

to happen in the optimal solution, but is possible with government subsidies). For b > bsup
t ,

the new tax function is illustrated by the steep dashed line.

Lemma 6. To any piecewise smooth tax policy T 0
t (b), the corresponding envelope tax policy

T env
t (b) is u.h.c. and is equivalent to T 0

t (b) in the sense that it induces the same bequest

behavior for almost all households and raises the same tax revenue.

Proof. The explanations given in Definition 4 have shown that the bequest function is u.h.c.,

and that the value function of households is unchanged if we replace T 0
t (b) by T env

t (b). The

change can only affect the bequest correspondence of those households where a discontinuity

appears under T 0
t (b). Since the bequest correspondence is monotonic, this can happen at
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only a countable number of capital values. Since the cross-sectional distribution functions of

k are continuous w.r.t. Lebesgue measure, only a zero measure set of households are affected.

For that reason, there is no effect on tax revenues.

Lemma 7. Any sequences of value functions vt(z), v′t(k), weakly increasing and upper hemi-

continuous (u.h.c.) bequest correspondences B0
t [k] and envelope tax functions Tt (Bt [b]) sat-

isfy Equs. (13)–(15) if and only if they satisfy

B0
t [k] = argmax

b

{

U

(

k −
b

1 + r
− T (b)

)

+ β

∫

<

vt+1(b + z)π(z)dz

}

(40)

vt(k) = max
b

{

U

(

k −
b

1 + r
− T (b)

)

+ β

∫

<

vt+1(b + z)π(z)dz

}

(41)

Proof. Deriving Equs. (13)–(15) from Equs. (40) and (41) is standard.

Equ. (41) is derived from Equs. (13)–(15), as follows:

vt(k) = vt(z) +

∫ k

z

v′t(j)dj

= U (Ct [z])) + β

∫

<

vt+1(Bt [z] + z)π(z)dz +

∫ k

z

{

U ′ (Ct [j]))

−

[(

1

1 + r
+ T ′(Bt [j])

)

U ′ (Ct [j])) + β

∫

<

v′t+1(Bt [j] + z)π(z)dz

]

dBt [j]

dj

}

dj

= U (Ct [z]) +

∫ k

z

U ′ (Ct [j]))

(

1 −

(

1

1 + r
+ T ′(Bt [j])

)

dBt [j]

dj

)

dj

+ β

∫

<

[

vt+1(Bt [z] + z) +

∫ k

z

v′t+1(Bt [j] + z)
dBt [j]

dj
dj

]

π(z)dz

= U (Ct [k]) + β

∫

<

vt+1(Bt [k] + z)π(z)dz (42)

In (42), the term Ct [k] should always be understood as an abbreviation for k − Bt[k]
(1+r) −

Tt (Bt [k])). The second line of (42) uses (14) and (15). The third line is equal to zero,

because the Euler equation (13) holds with equality for almost all values of k. The latter

holds because Bt [k] is differentiable w.r.t. k almost everywhere (because it is monotonic, c.f.

Foran, 1991, Theorem (8.2)), and because T ′
t+ (b) = T ′

t− (b) for almost all b (by the definition

of a piecewise smooth tax function). The forth and fifth line are just a slight reordering, and

the last line follows because the terms under the integral
∫ k

z
are the derivatives of the utility

function and the value function w.r.t. k, respectively. The last line is equivalent Equ. (41),

because Bt [k] is defined as the maximizing b.
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It remains to derive Equ. (40) from Equs. (13)–(15). To that end, define

w (k, b) ≡ U

(

k −
b

1 + r
− T (b)

)

+ β

∫

<

vt+1(b + z)π(z)dz (43)

We then have to show that w
(

k, b0
)

≥ w (k, b) for each b0 ∈ B0
t [k] and any b. Since we

already know that any b not in the range RB
t of B0

t [k] is not optimal for any household

under the policy Tt (Bt [b]) (by construction of an envelope tax policy, cf. the explanations

in Definition 4), we can restrict ourselves to the b ∈ RB
t . (We can further restrict attention

to those b that leave a positive level of consumption.) Then, for every k, b0 ∈ B0
t [k] and

b ∈ RB
t ,

w
(

k, b0
)

− w (k, b) =

∫ b0

b

∂w
(

k, b̃
)

∂b̃
db̃ (44)

≥

∫ b0

b

∂
[

U
(

K
(

b̃
)

− b̃
1+r

− T
(

b̃
))

+ β
∫

<
vt+1(b̃ + z)π(z)dz

]

∂b̃
db̃ (45)

= 0 (46)

where K
(

b̃
)

≡ sup
{

k : b̃ ∈ B0
t [k]

}

. For b̃ ≤ b0, we have K
(

b̃
)

≤ k and the inequality (45)

follows from the concavity of U(c). In the case b ≥ b0, the terms in the integral in (45)

are bigger than their counterparts in (44), but are multiplied by -1 in the integration. (46)

follows again from (13), since the Euler equation holds with equality for almost all k.

The critical step in the derivation is that the whole range of integration of (44) is in RB
t ,

which is a closed interval, because B0
t [k] is u.h.c.

Proof of Lemma 4. For any solution of Program P1, we know from Lemma 6 that there

exists an equivalent envelope tax function. From Lemma 2ii) we know that the corresponding

household value function vt(k) satisfies limt→∞ βt ¯̄Kt = 0. From Lemma 7 we know that it

satisfies the first order conditions Equs. (13)–(15). This shows that there exists an equivalent

solution of Program P2.

Now take any solution of Program P2. From Lemma 7 we know that the value function

satisfies the HJB equations (40) and (41). From the condition limt→∞ βt ¯̄Kt = 0 we know

that the HJB equations are sufficient for the solution of the household problem (Stokey and

Lucas 1989, Theorem 9.2). Any selection of the bequest correspondence then gives us a

solution of Program P1.

A.2 Stationary points of the Lagrangian

The Lagrangian approach of Section 3.3 is very intuitive, and the results we obtain seem

to confirm its validity. Nevertheless, it is preferable to have a rigorous justification for the
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approach, that means, a proof of Lemma 5. For this, we have to show that the problem can

be brought into the framework of Zeidler (1985, Ch. 48). Since a detailed proof would fill

several pages, I ignore a number of technical issues and confine myself in the following to a

sketch of a proof.

Outline of a proof of Lemma 5. Take a candidate solution Bt [k] , Tt(0), T ′
t (b) , φt [k] , vt(z), v′t(k)

to Program P2 such that Bt [k] is continuously differentiable with B′
t [k] > 0 and (6) is sat-

isfied.

Denote by C1[a, b; c] the Banach space of once continuously differentiable functions on

the closed interval (a, b), with the norm ‖f‖ ≡ maxa≤x≤b f(x)+ 1
c
maxa≤x≤b f ′(x). To derive

necessary first order conditions, we consider variations

• δBt [k] ∈ C1
(

k∗
t , k̄; min

k∈(k∗

t
,k̄) B′

t [k]
)

; where k∗
t denotes the k such that Bt [k] = 0 for

k < k∗
t and Bt [k] > 0 for k > k∗

t . Notice that min
k∈(k∗

t
,k̄) B′

t [k] > 0 is well defined,

since a continuous function on a compact interval has a minimum.

• δTt(0) ∈ <

• δT ′
t (b) ∈ C1

(

0, Bt

[

K̄t

]

, 1
)

,

• δφt [k] ∈ C1
(

z, K̄t, 1
)

• vt(z) ∈ <

• v′t(k)) ∈ C1
(

z, K̄t, 1
)

Each of the spaces in which the variations live is a Banach space. Denote the product of the

above spaces by Xt, which is again a Banach space under the sum norm, which we denote by

|X |t.

We then define our space of variations X as

X ≡

{

X ∈
∏

t=0,...

Xt : ‖X‖ ≡

∞
∑

i=0

|Xt|t < ∞

}

(47)

This is again a Banach space under the norm ‖X‖. With this, we satisfy the main require-

ments of Zeidler (1985, Theorem 48B), which shows the existence of Lagrange multipliers

for our problem. [I have ignored here the questions of whether the Frechet derivative of the

constraints has a closed range, and whether a solution is necessarily a “regular point” where

the Lagrange multiplier λ0 of the objective function is strictly positive. The numerical solu-

tions strongly suggest that the problem is well-behaved in this sense.] The theorem gives us

the Lagrange multiplier as a linear functional; its integral representation is in general of the

form of a Stieltjes integral like
∫

φ(k)dΛ(k). Writing it as such, and considering all possible
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variations of φt [k] it becomes clear that the function Λ(k) cannot have discontinuities, and

we can write the integral as
∫

φ(k)λdk as required in the lemma. (Loosely speaking, this

is shown by the fact that the Lagrange multipliers λt[k] and µt[k] are finite in the optimal

solution, cf. remarks after Equ. (59), and Lemma 8i.)

One should note that in all the calculations we consider only variations in bequests that

leave the critical point k∗
t unchanged. For k < k∗

t , we set the bequests to 0. In this way, the

inequality constraints are effectively removed from the variational problem. It turns out that

one need not vary k∗
t to derive the necessary first order conditions that we use.

B Proofs for Section 4

B.1 Proof of Proposition 1

For Proposition 1, we have to characterize a stationary point of the Lagrangian (16). In order

to differentiate the Lagrangian w.r.t. parameters at time t, it is useful to collect all terms in

(16) that refer to a fixed t, divide them by βt and apply some transformations:

L/βt = . . . +

∫

<

φt [k] U (Ct [k]) + φt [k] ξt[k]Bt [k] + φt [k] ζt[k] (−v′t(k) + U ′ (Ct [k]))

+ φt [k] µt[k]

(

−U ′ (Ct [k]) + βR̄t[k]

∫

<

v′t+1 (j) π(j − Bt [k])dj

)

dk

+ νt

(

Tt(0) + T tot
t

)

−

∫

<

φt [k] λt[k]dk + β

∫

<

φt [k]

∫

<

λt+1[j]π (j − Bt [k]) dj dk

+

∫

<

v′t (k)

∫

<

φt−1 [j] µt−1[j]R̄t−1[j]π(k − Bt−1 [j])dj dk

+ χt

(

−vt(z) + U (Ct [z])) + β

∫

<

vt+1(Bt [z] + z)π(z)dz

)

+ χt−1

(

vt(z) +

∫

<

∫ Bt−1[z]+z

z

v′t(j)djπ(z)dz

)

+ . . . (48)

In (48), total taxes T tot
t are an abbreviation for

T tot
t =

∫

<

φt [k]

∫ k

0

T ′
t (Bt [j]) B′

t [j]dj dk (49)

For the term in the second line of (48) we have used
∫

<

U ′ (Ct+1 [Bt [k] + z]) π(z)dz =

∫

<

U ′ (Ct+1 [j]) π(j − Bt [k])dj (50)

In the third line we have used
∫

<

λt+1[k]

∫

<

φt [j] π (k − Bt [j]) dj dk =

∫

<

∫

<

φt [j]λt+1[k]π (k − Bt [j]) dk dj

=

∫

<

φt [k]

∫

<

λt+1[j]π (j − Bt [k]) dj dk
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The forth line has used

∫

<

φt−1 [k] µt−1[k]R̄t−1[k]

∫

<

U ′ (Ct [Bt−1 [k] + z]) π(z)dz dk

=

∫

<

U ′ (Ct [k])

∫

<

φt−1 [j] µt−1[j]R̄t−1[j]π(k − Bt−1 [j])dj dk (51)

which is an application of the transformation

∫

<

f [k]

∫

<

g[Bt−1 [k] + z]π(z)dz dk =

∫

<

f [k]

∫

<

g[w]π (w − Bt−1 [k]) dw dk

=

∫

<

g[w]

∫

<

f [k]π (w − Bt−1 [k]) dk dw =

∫

<

g[k]

∫

<

f [j]π (k − Bt−1 [j]) dj dk (52)

which holds for any continuous functions f and g, where the first equality is a variable

substitution, the second applies Fubini’s theorem (which holds because we work with bounded

functions, cf. Lemma 8), and the third equality is simply a renaming of variables. The last

line has used (10).

For the following derivations, it is convenient to list formulas for some frequently used

derivatives, which are obtained from (19) and (17):

∂Ct [k]

∂k
= 1 − B′

t [k]

(

T ′
t (Bt [k]) +

1

1 + r

)

= 1− B′
t [k] R̄−1

t [k] (53)

∂Ct [k]

∂Bt [k]
= −T ′

t (Bt [k]) −
1

1 + r
= −R̄−1

t [k] (54)

∂Bt [k]

∂Ct[k]
= −

1 + r

1 + (1 + r)T ′
t (Bt [k])

= −R̄t[k] (55)

∂R̄t[k]

∂Bt [k]
= −

(1 + r)2T ′′
t (Bt [k])

(1 + (1 + r)T ′
t (Bt [k]))2

= −R̄2
t [k]T ′′

t (Bt [k]) (56)

B.1.1 Deriving equations for the Lagrange multipliers

Let us first handle the constraint (41). Since (41) is the only place in the Lagrangian that

contains the variable vt(z), the latter can be chosen such that the constraint is met, and the

Lagrange multiplier should be zero. To see this formally, take the derivative w.r.t. vt(z) in

(16) (or in (48)) to obtain χt = χt−1, so that χ is constant over time. To see that it is really

0, take the derivative w.r.t. Bt [z] to obtain (note that, apart from (41), Bt [z] enters the

Lagrangian only through integral terms that make no contribution to the derivative)

χt

(

−R̄t[z]U ′
t [z] + β

∫

<

v′t+1(Bt [z] + z)π(z)dz

)

= 0 (57)

The term in parentheses in (57) will be strictly negative whenever the non-negativity con-

straint (2c) is binding. So (57) can be met for all t only if χt = 0. In the following, we can

therefore ignore any terms in χt.
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We now focus on the optimal choice of φt [k]. A necessary condition for φt [k] to be

optimal is that no feasible variation ε · δφt [k], where ε is understood to be a small real

number, improves the objective function. Inserting φt [k] + ε · δφt [k] into (48), the derivative

w.r.t. ε at ε = 0 must be zero. Using the Kuhn-Tucker conditions (22), this gives

∫

<

δφt [k]

(

U (Ct [k]) + νtTt (Bt [k]) − λt[k] +

∫

<

βλt+1[j]π (j − Bt [k]) dj

)

dk = 0 (58)

The standard argument from the calculus of variations (see, e.g., Kamien and Schwartz, 1991,

p. 16) shows that this can be fulfilled for all feasible variations only if the term in parentheses

is zero, which gives

λt[k] = U (Ct [k]) + νtTt (Bt [k]) + β

∫

<

λt+1[j]π (j − Bt [k]) dj (59)

Since β < 1 and π(.) is a probability density, we can iterate the rhs of (59) forward and

obtain a unique bounded solution whenever supk |U (Ct [k]) + νtTt (Bt [k])| grows in t at a

rate smaller than 1/β. Furthermore, since π is differentiable, it is clear that the rhs of (59) is

differentiable w.r.t. k at all points where B [k] is differentiable, therefore λt[k] is differentiable

w.r.t. k at these points. From the definition of a smooth interior solution, this is true at all

points where Bt [k] > 0. Differentiating (59) and using (53) as well as
∫

<

λt+1[j]π
′ (j − Bt [k]) dj = −

∫

<

λ′
t+1[j]π (j − Bt [k]) dj (60)

we then obtain at the points of differentiability

λ′
t[k] = U ′

t [k]
(

1 − B′
t [k] R̄−1

t [k]
)

+ νtT
′
t (Bt [k]) B′

t [k] + B′
t [k]

∫

<

βλ′
t+1[j]π (j − Bt [k]) dj

(61)

Since

B′
t [k] U ′

t [k]R̄−1
t [k] = βB′

t [k]

∫

<

U ′
t+1[j]π (j − Bt [k]) dj

we can transform (61) to

λ′
t[k] − U ′

t [k] = νtT
′
t (Bt [k]) B′

t [k] + βB′
t [k]

∫

<

(

λ′
t+1[j] − U ′

t+1[j]
)

π (j − Bt [k]) dj (62)

Using the definition (29), Equ. (62) can be written compactly as (27).

Next we consider policy variations ε·δv′
t(k). Inserting this into into (48) and differentiating

w.r.t. ε at ε = 0 we get
∫

<

δv′t(k)

{

−φt [k] ζt[k] +

∫

<

φt−1 [j] µt−1[j]R̄t−1[j]π(k − Bt−1 [j])dj

}

dk = 0 (63)

Again, this holds for all feasible variations only if

φt [k] ζt[k] =

∫

<

φt−1 [j] µt−1[j]R̄t−1[j]π(k − Bt−1 [j])dj = 0 (64)
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We now turn to the variation δBt [k]. Applying (53) and (54), and using (14) and (64),

we obtain

∫

<

δBt [k]

{

−φt [k] R̄−1
t [k]U ′

t [k] + φt [k] µt[k]R̄−1
t [k]U ′′

t [k]

− βφt [k] µt[k]R̄t[k]

∫

<

U ′
t+1[j]π

′(j − Bt [k])dj

− βφt [k] µt[k]R̄2
t [k]T ′′

t (Bt [k])

∫

<

U ′
t+1[j]π(j − Bt [k])dj + φt [k] ξt[k] + νtφt [k] T ′

t (Bt [k])

− R̄−1
t [k]U ′′

t [k]

∫

<

φt−1 [j] µt−1[j]R̄t−1[j]π(k − Bt−1 [j])dj

− φt [k]

∫

<

βλt+1[j]π
′ (j − Bt [k]) dj

}

dk = 0 (65)

By the same argument as above we get

− φt [k] R̄−1
t [k]U ′

t [k] + φt [k] µt[k]R̄−1
t [k]U ′′

t [k]

− βφt [k] µt[k]R̄t[k]

∫

<

U ′
t+1[j]π

′(j − Bt [k])dj

− βφt [k] µt[k]R̄2
t [k]T ′′

t (Bt [k])

∫

<

U ′
t+1[j]π(j − Bt [k])dj + φt [k] ξt[k] + νtφt [k] T ′

t (Bt [k])

− R̄−1
t [k]U ′′

t [k]

∫

<

φt−1 [j] µt−1[j]R̄t−1[j]π(k − Bt−1 [j])dj

− φt [k]

∫

<

βλt+1[j]π
′ (j − Bt [k]) dj = 0 (66)

To obtain an expression for µ[k], we look at those k where B [k] > 0. Then ξ[k] = 0. To

eliminate the integrals, we differentiate the household first order constraint w.r.t. k, which

is binding whenever µ[k] is nonzero. This implies (use (54)–(56))

φt [k] µt[k]

{

U ′′
t [k]

(

1 − B′
t [k] R̄−1

t [k]
)

+ βR̄2
t [k]T ′′

t [k]B′
t [k]

∫

<

U ′
t+1[j]π(j − Bt [k])dj

+ βB′
t [k] R̄t[k]

∫

<

U ′
t+1[j]π

′(j − Bt [k])dj

}

= 0 (67)

Now we multiply (66) by B′ [k] and subtract (67), which gives

φt [k] µt[k]U ′′
t [k] − φt [k] R̄−1

t [k]U ′
t [k]B′

t [k] + νtφt [k] T ′
t (Bt [k]) B′

t [k]

− B′
t [k] U ′′

t [k]R̄−1
t [k]

∫

<

φt−1 [j]µt−1[j]R̄t−1[j]π(k − Bt−1 [j])dj

− φt [k] B′
t [k]

∫

<

βλt+1[j]π
′ (j − Bt [k]) dj = 0 (68)
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Multiplying (61) by φ [k] and subtracting from (68), using (60), we get

φt [k] µt[k]U ′′
t [k] = B′

t [k] U ′′
t [k]R̄−1

t [k]

∫

<

φt−1 [j] µt−1[j]R̄t−1[j]π(k − Bt−1 [j])dj

− φt [k] (λ′
t[k] − U ′

t [k]) (69)

Slight reordering gives Equ. (26).

B.1.2 First order conditions of the government problem

Differentiating the Lagrangian (16) w.r.t. Tt(0) and using (64), we obtain
∫

<

φt [k] {U ′
t [k] − µt[k]U ′′

t [k]} + U ′′
t [k]

∫

<

φt−1 [j] µt−1[j]R̄t−1[j]π(k − Bt−1 [j])dj dk = νt

(70)

Inserting (26) into (25) and using (53), we see that Wt[k] can be written as

Wt[k] ≡ U ′
t [k] − µt[k]U ′′

t [k] +
U ′′

t [k]

φt [k]

∫

<

φt−1 [j]µt−1[j]R̄t−1[j]π(k − Bt−1 [j])dj (71)

Using (71), (70) simplifies to (23).

Next we are going to consider variations of the form T ′
t [k] + εδT ′

t [k]. We then need the

following derivatives, which are derived from (20), (49) and (17):

∂Ct[k]

∂ε

∣

∣

∣

∣

ε=0

= −

∫ k

0

δT ′
t [j] B′

t [j]dj

∂T tot
t

∂ε

∣

∣

∣

∣

ε=0

=

∫

<

φt [k]

∫ k

0

δT ′
t [j] B′

t [j]dj dk

∂R̄k[t]

∂ε

∣

∣

∣

∣

ε=0

=
−(1 + r)2δT ′

t [k]

(1 + (1 + r)T ′
t [k])2

Differentiating the Lagrangian w.r.t. ε and using (64) then gives

∫

<

φt [k]

{

(−U ′
t [k] + µt[k]U ′′

t [k])

∫ k

0

δT ′
t [j] B′

t [j]dj − µt[k]
(1 + r)δT ′

t [k]

1 + (1 + r)T ′
t [k]

U ′
t [k]

}

dk

−

∫

<

U ′′
t [k]

∫

<

φt−1 [l] µt−1[l]R̄t−1[l]π(k − Bt−1 [l])dl

∫ k

0

δT ′
t [j] B′

t [j]dj dk

+ νt

∫

<

φt [k]

∫ k

0

δT ′
t [j] B′

t [j]dj dk = 0 (72)

For the fourth term, we used again (21). Using (71), (72) simplifies to

∫

<

φt [k]

{

(νt − Wt[k])

∫ k

0

δT ′
t [j] B′

t [j]dj − δT ′
t [k] µt[k]R̄k[t]U ′

t [k]

}

dk = 0 (73)

Applying the transformation

∫

<

f [k]

∫ k

0

g[j]dj dk =

∫

<

g[j]

∫ ∞

j

f [k]dk dj =

∫

<

g[k]

∫ ∞

k

f [j]dj dk (74)

39



to (72), we obtain

∫

<

δT ′
t [k]

{

B′
t [k]

∫ ∞

k

(φt [j] (νt − Wt[j]))dj − φt [k] µt[k]R̄t[k]U ′
t [k]

}

dk = 0 (75)

Again, this holds for all feasible δT ′ [k] only if (24) holds for all k.

This completes the proof of Proposition 1.

B.2 Derivation of Formula (30)

Using (31), the definition of the cross-sectional distribution ΦK(k) ≡
∫ k

0 φ [j]dj and the fact

that νt = Ave0
t (W ) (cf. (23)), we can rewrite (24) as

Ave0
t (W ) = Avek

t (W ) +
φt [k] µt[k]R̄t[k]U ′

t [k]

B′
t [k] (1 − ΦK(k))

(76)

Equ. (30) can be obtained by rearranging (76), using the definition (17), Equ. (33), the

identity φB(Bt (k)) = φt [k] /B′
t [k] which links the cross-sectional densities φt [k] of capital

and φB(Bt (k)) of bequests, and finally using

U ′
t [k]

U ′′
t [k]

= −ηBs

R [t, k]
Bt [k]

B′
t [k]

(77)

Equ (77) is derived as follows. Differentiating the Euler equation (cf. Equ. (67)) and solving

for B′
t [k], we get

B′
t [k] =

U ′′
t [k]

U ′′
t [k]R̄−1

t [k] − βR̄t[k]
∫

<
U ′

t [j]π
′(j − Bt [k])dj − R̄t[k]T ′′

t [k]U ′
t [k]

(78)

Next we develop an expression for the substitution effect of interest rate changes on be-

quests. For this, consider a household with capital k which faces the after tax discount factor

R̄t[k]. We will derive the change in bequests as a reaction to a change in R̄t (Bt [k]), keeping
dR̄t(Bt[k])

dB
constant (that means we change the marginal tax rate T ′ [k] while keeping T ′′[k]

fixed). Denote the household’s chosen consumption-bequest bundle by (C̄, B̄). To isolate

the substitution effect, the household obtains a Slutsky compensation, so that its budget

constraint reads C = C̄ − R̄t[k]−1(B − B̄). Inserting this into the household Euler equation

(21) (with equality) and taking total derivatives at point (C̄, B̄) we obtain

− U ′′
t [k]R̄t[k]−1dBs[k] = −βR̄t[k]

∫

<

U ′
t [j]π

′(j − Bt [k])djdBs[k]

+ β
dR̄t (Bt [k])

dB

∫

<

U ′
t [Bt [k] + z]π(z)dzdBs[k] + β

∫

<

U ′
t [Bt [k] + z]π(z)dzdR̄[k] (79)

Using (56), and the Euler equation (21) with equality, we obtain from (79)

dBs[k]

dR̄[k]
= −

R̄t[k]−1U ′
t [k]

U ′′
t [k]R̄t[k]−1 − βR̄t[k]

∫

<
U ′

t [j]π
′(j − Bt [k])dj − R̄t[k]T ′′

t [k]U ′
t [k]

(80)

Defining ηBs

R [t, k] = dBs[k]
dR̄[k]

R̄t[k]
Bt[k] and combining (78) and (80), we then obtain (77).
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B.3 Proof of Proposition 2

Lemma 8. In a smooth interior solution, for all t,

i) the functions Ct [k], U ′
t [k], U ′′

t [k], R̄t[k], T ′(Bt [k]), B′
t [k], λ∗

t [k], λ∗
t [k]/B′

t [k], µt[k] and

µt[k]/B′
t [k] are bounded on the support of φt [k].

ii) there exists a constant Mt > 0 such that U ′
t [k] ≥ Mt, |U

′′
t [k]| ≥ Mt and R̄t[k] ≥ Mt.

Proof. The existence of a lower bound ct > 0 and an upper bound c̄t on consumption has

been established in the proof of Lemma 2. The boundedness of U ′
t [k] and U ′′

t [k] then follows

from the fact that they are continuous on the compact interval (ct, c̄t).

In a smooth interior solution, the household Euler equation holds with equality for all

k such that Bt [k] > 0, which implies that R̄t[k] ∈
(

β−1 U ′(c̄t)
U ′(c

t
) , β

−1 U ′(c
t
)

U ′(c̄t)

)

. This shows

the boundedness of R̄t[k] and that of T ′(Bt [k]), since T ′(Bt [k]) = R̄−1
t [k] − 1/(1 + r), cf.

Equ. (17).

To show the boundedness of λ∗
t [k], consider Equ. (27). Because of the properties of π(z)

and the continuity of Bt [k], the integral on the rhs of (27) is continuous in k, and therefore

bounded on the compact support of φt [k]. This implies the boundedness of λ∗
t [k], because

all other functions on the rhs of (27) have been shown to be bounded. Similarly, we obtain

the boundedness of λ∗
t [k]/B′

t [k] by dividing the rhs of (27) by B′
t [k].

For µt[k], we consider only the k where φt [k] > 0 (µt[k] is not pinned down by the first

order conditions at points with zero density). Then divide (26) by φt [k] and use (8) to obtain

µt[k] = −
λ∗

t [k]

U ′′
t [k]

+
B′

t [k]

R̄t[k]

∫

<
φt−1 [j] R̄t−1[j]µt−1[j]π(k − Bt−1 [j])dj

∫

<
φt−1 [j] π (k − Bt−1 [j]) dj

(81)

We know that µ−1[k] is bounded because it is identically zero. Having established the bound-

edness of µt−1[k], (81) shows the boundedness of µt[k]: the fraction is bounded since φt [k]

is nonnegative, and R̄t−1[j]µt−1[j] is bounded. The other functions on the rhs of (81) are

bounded, and U ′′
t [k] and R̄t[k] are bounded away from zero.

Similarly, we obtain the boundedness of µt[k]/B′
t [k] dividing the rhs of (81) by B′

t [k] and

using Equ. (27).

Part ii) of the lemma then follows from the boundedness of the relevant functions and the

fact that U ′
t [k] and R̄t[k] are strictly positive and U ′′

t [k] is strictly negative (cf. Assumption 3i).

Proof of Proposition 2. 1) We first show that φt [k] is non-increasing in a left neighbor-

hood of K̄t. Since K̄t−1 is the upper bound of the support in t− 1, we can write (8) as

φt [k] =
∫ K̄t−1

−∞
φt−1 [j] π (k − Bt−1 [j]) dj. Differentiating w.r.t. k we obtain

φ′
t[k] =

∫ K̄t−1

−∞

φt−1 [j] π′ (k − Bt−1 [j]) dj ≤ 0 (82)
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Since Bt−1 [j] ≤ K̄t − z for all j in the support of φt [k], we see that k−Bt−1 [j] ≥ z− ε

for any ε > 0 and k ∈ (K̄t − ε, K̄t). From Assumption 2iv), there is an ε > 0 s.t.

π′(z) ≤ 0 for z ∈ (z − ε, z). The claim then follows from (82).

2) Next we show that

lim
k→K̄t

1

φt [k]

∫ K̄t

k

φt [j] f(k, j)dj = 0 (83)

for any bounded function f(k, j). Take any M such that |f(k, j)| ≤ M and define ε as

above, then

1

φt [k]

∣

∣

∣

∣

∣

∫ K̄t

k

φt [j] f(k, j)dj

∣

∣

∣

∣

∣

≤
1

φt [k]

∫ K̄t

k

φt [k] |f(k, j)|dj ≤ M(K̄t − k) (84)

for all k ≥ K̄t − ε, and the claim follows.

3) Applying (69) to (71), we obtain the following representation for Wt[k]:

Wt[k] = U ′
t [k] − µt[k]U ′′

t [k] +
R̄t[k]

B′
t [k]

(µt[k]U ′′
t [k] + λ∗

t [k]) (85)

From Lemma 8, we see then that Wt[k] is bounded on the support of φt [k].

4) Divide (24) by φt [k] and make the upper bound of integration K̄t explicit. This gives

B′
t [k]

1

φt [k]

∫ K̄t

k

φt [j] (νt − Wt[j])dj = µt[k]R̄t[k]U ′
t [k] (86)

The boundedness of Wt[j] was shown in 3), and that of B′
t [k] in Lemma 8. From 2)

it then follows that the lhs of (86) goes to 0 as k goes to K̄t. On the rhs of (86), we

see from Lemma 8ii) that R̄t[k]U ′
t [k] is bounded away from 0. Then the rhs of (86) can

only go to zero if limk→K̄t
µt[k] = 0, which is what had to be shown (cf. Footnote 3).

C Computation

Both household bequests, as a function of k, and the marginal tax schedule are approximated

by flexible functional forms. A natural choice would be Chebyshev polynomials. However,

since the nonlinear tax function gives rise to somewhat irregular bequest functions, after

some experimentation I found that the following ad-hoc construction worked better. For the

bequest function, I use the parameters i) k∗
t , the level of capital where the non-negativity

constraint starts to bind; ii) B(ki) at (nb − 1) different node points, where the nodes are en-

dogenously determined through k∗
t and the upper bound of the distribution. iii) the derivative

B′(ki) at k∗
t and the node points. This makes 2nb parameters. To these data I then a apply
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a piecewise quadratic interpolation, using a construction as in Schumaker’s quadratic splines

(cf. Judd, 1998, Section 6.11), but with the interior free node always at the mean of adjacent

nodes. This construction turned out to be very good in giving a stable bequest function and

guaranteeing that B′(ki) > 0, which is essential for the calculation. I usually worked with 15

node points (including k∗
t ), which means 30 free parameters in each period.

For the marginal tax function, I took a cubic spline, usually on 8 node points. Fixing the

first derivative at both end points, this gives 10 parameters per period. The subsidy gives

one additional parameter per period.

The distribution function and the Lagrange multipliers where defined on a grid of 400

points. All the integrals (in (8), (26), (27) etc. are computed by a simple midpoint rule on

this grid. It was then not necessary to interpolate these functions.

An approximate solution of the model is found through the following nonlinear root

finding problem. Given a set of parameters of the bequest functions, the tax functions, and

the shadow value of tax revenues νt,

1. calculate the cross-sectional distributions by solving (8), starting from the given φ0 [k].

2. calculate the λ∗
t [k] backwards using (27). Initialize λ∗

T [k] = 0. Then apply (27) ten

times, and use the result as value of λ∗
T [k]. Then compute λ∗

T−1[k] by (27) and so on.

3. calculate µt[k]; for this, I was not using (26), but the following equivalent formulation:

µ∗
t [k] = −φt [k] R̄t[k]

λ∗
t [k]

U ′′
t [k]

+ B′
t [k]

∫

<

µ∗
t−1[j]π(k − Bt−1 [j])dj (87)

where we have defined

µ∗
t [k] = φt [k] µt[k]R̄t[k] (88)

We start with the initialization µ∗
−1[k] = 0.

4. Calculate the following residuals:

• the residuals of the Euler equation U ′ (Ct [k]) = βR̄t[k]
∫

<
U ′ (Ct+1 [Bt [k] + z]) π(z)dz

and of Equ. (78) at the node points. To have as many residuals as parameters, we

get a bequest function in T + 1 by BT+1 [k] = BT [k], which is justified since we

should be approximately in a steady state after 10 periods (means 300 years).

• the residuals of the government first order conditions (23) and (75), where δT ′
t [k]

is the derivative of T ′
t [k] w.r.t. any of the parameters of the representation of the

tax function. (It is more natural and probably more accurate to use directly (75),

rather than the residual of (24) at some node points).

• The residual of the government budget constraint (4).
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We replace the infinite horizon model by 10 periods (which conforms to 300 years). With

the above approximation, we have a problem of 420 nonlinear equations in 420 unknowns.

We have to find parameter values that make these residuals equal to zero. This was a

difficult task; computing the set of residuals once is already very costly, due to the integral

equations that determine the distribution and the Lagrange multipliers. The task was solved

by Broyden’s algorithm (Press, Flannery, Teukolsky and Vetterling 1986, Section 9.7), in

combination with the use of continuation methods (Judd 1998, Section 5.8).

To check accuracy, I sometimes increased the number of parameters in the approximations.

For the bequest function, I was using up to 50 parameters per period, and I increased the

number of the nodes in the quadrature grid to 800. The numerical results then change

slightly, but the conclusions that we reach in the text were never changed. It should be

clear, however, that we are not talking about a high-precision solution here. So far I did not

increase the number of tax parameters beyond 11. The accuracy of this approximation is

discussed in the text.
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