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Abstract

This paper studies how the labor market dynamics of the Mortensen-Pissarides
matching model change when concave preferences and saving are considered. We
compare (1) the standard model where all agents have linear utility, so the interest
rate is constant; (2) a model where capitalists have concave utility, so interest rates
vary; (3) a model where both capitalists and workers have concave utility, but
workers have no access to capital markets; (4) a model where workers engage in
precautionary saving. Taking into account worker risk aversion has a strong effect
on the wage bargaining game, and thus on labor market dynamics, when workers
have no access to capital markets. However, when precautionary saving is allowed,
labor market dynamics are much closer to those of the standard linear-utility setup,
in spite of the fact that workers do not save very much in our calibration.

Calculating the precautionary saving model requires us to compute the equilib-
rium dynamics of the asset distribution. We follow the method of Reiter (2006),
calculating a steady state on a fine grid of asset levels, and then linearizing the
solution over this same grid with respect to aggregate shocks. The dynamics caused
by productivity shocks can be approximated fairly well by tracking a few aggregate
statistics, as in Krusell and Smith (1998). But when shocks have important redis-
tributional consequences, accuracy requires a higher-dimensional representation of
the equilibrium.
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1 Introduction

Labor market dynamics, and especially changes in the unemployment rate, play a central
role in debates about the importance of business cycles both in academic economics and
in the popular press. Partly for this reason, models of unemployment over the business
cycle are a hot topic of current research. It is of particular interest to investigate
unemployment fluctuations in models where — unlike the Mortensen/Pissarides baseline
model — workers are risk averse and are imperfectly insured against unemployment.
However, owing to the technical difficulty of characterizing distributional dynamics in
general equilibrium, economists are only now beginning to address models of this type.

In this paper we propose a benchmark model of the labor market where workers en-
gage in precautionary saving, and we solve its business cycle dynamics using a highly ac-
curate but tractable algorithm. We start from the most standard Mortensen/Pissarides
model and go via several steps to a model with physical capital where both capitalists
and workers are risk averse savers. Our focus throughout is on how incorporating saving
into the matching model affects the dynamics of labor market aggregates. Of course,
there are many dimensions for which it might be important whether workers can save
or not. For example, the effect of government finance on real economic variables de-
pends on how much households deviate from Ricardian behavior, and the welfare cost
of business cycles will also depend on workers’ saving possibilities. But these issues are
beyond the scope of the paper.

We focus on a specification which seems to us the simplest case applicable to the
issues we address. In our model, workers must match with vacancies, created by capi-
talists, in order for production to occur. Physical capital is also required for production;
there are no adjustment costs in changing capital. Matching is random; both workers
and vacancies are identical ex ante; separation is exogenous. Business cycles are driven
by aggregate technology shocks. Wages are determined by Nash bargaining, relative to
the threat of separation, on a short term (one period) basis. Since we are concerned
with documenting the effects of saving, we explicitly take into account the quantitatively
important effect of asset holdings on the wage bargaining game. We calibrate the model
so that the median worker’s assets are only a small part of the per capita capital stock.

Characterizing the cyclical behavior of the labor market requires us to solve for the
dynamics of the wealth distribution over time. For the sake of accuracy, we employ
the algorithm of Reiter (2006). This begins with a precise nonlinear calculation of
the steady state equilibrium asset distribution on a fine grid. It then linearizes the
dynamics on this grid with respect to aggregate shocks. In addition to studying cyclical
dynamics, this method permits us to calculate the effects of wealth redistributions.
We can also investigate to what extent the high-dimensional aggregate dynamics can
be approximated by conditioning on a small set of moments, as in Krusell and Smith
(1998).

As we hinted in the second-to-last paragraph, incorporating savings into the match-
ing framework involves many specification choices. To begin with, the model must
specify what type of assets are available to workers for saving. The model must either
incorporate a single asset distribution across one class of agents who are both workers
and entrepreneurs, or must incorporate different types of agents to play these roles.
Different matching structures are possible, such as random matching equilibrium or
competitive search equilibrium. The bargaining game must be specified, including the
relevant threat point, possible interactions between workers, and the effects of ownership
of physical capital (by the firm) or savings (by the worker). The bargaining game could
determine the wage over a single period, or it could determine a long-term contract.
Heterogeneity of workers or jobs could be included, possibly as a way of endogenizing
separation.
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The specification we study here is chosen primarily for simplicity, not because we are
sure it is the best one. The growing literature on matching models with risk averse agents
has considered a variety of different setups, and we believe this is a good thing, because
there are so many possibilities that ought to be explored. A number of papers have
studied unemployment insurance in steady state models of matching and precaution-
ary saving, including early contributions by Costain (1999) and Acemoglu and Shimer
(2000), and more recent treatments by Reichling (2006) and Roca (2007) using newer
computational methods. Several papers have studied the cyclical dynamics of match-
ing models where workers are risk averse but are assumed unable to save, including
Beaudry and Pages (2001) and Rudanko (2006). The latter paper considers long-term
wage contracting and also compares competitive search equilibrium to random matching
equilibrium.

The papers most closely related to this one are business cycle models with labor mar-
ket matching in which workers protect themselves against unemployment risk through
precautionary saving. To date several papers have attempted this, including Costain
and Reiter (2005), Shao and Silos (2007), Nakajima (2007), and Krusell, Mukoyama,
and Sahin (2007). All these papers, like this one, study random matching and short-
term Nash wage bargaining. All except that of Krusell et al. (2007) simplify the role of
individual savings in the wage bargaining problem by assuming that unions negotiate
on workers’ behalf. While Nakajima (2007) and Krusell et al. (2007) assume there is
just one class of agents, who own all capital and firms and also act as workers, the other
papers treat entrepreneurs and workers as separate types. Except for our own previous
work, all these papers solved the distributional dynamics on the basis of some variant
of the algorithm of Krusell and Smith (1998).

2 Model

2.1 Overview

The purpose of this section is to derive a model that allows capital accumulation of
workers, but is otherwise as simple as possible, and as close as possible to a standard
Mortensen/Pissarides matching model.

We want to highlight two important modeling choices. First, we assume that there
are two types of agents, capitalists and workers. This assumption serves several pur-
poses. It makes it easy to calibrate the model with a realistic aggregate capital/output
ratio, while nevertheless ensuring that the median worker holds assets equivalent to
just a few months of wage income.1 Furthermore, all firms (matches) are owned by
capitalists, who will be assumed identical. This guarantees that the firm’s problem is
well-defined, because the entrepreneurs’ marginal utility defines the stochastic discount
factor. Finally, since workers are not allowed to trade in firms, only one asset is traded
in equilibrium, namely physical capital. Therefore there is no need to solve a portfolio
choice problem.

The second important modeling choice is that we restrict the wage contracts to be
short term, that is, valid for only one period. Moreover, we assume that each period’s
wage bargaining takes place between an individual firm and an individual worker. This
kind of contract leaves important efficiency gains unexploited. First, since capital mar-
kets are incomplete, there is room for an intertemporal insurance contract between firms

1In Nakajima (2007) and Krusell, Mukoyama, and Sahin (2007), which have only one class of agents,
a typical worker holds several years of income, implying much greater self-insurance. Clearly, additional
heterogeneity could be introduced into their models (in discount factors, for instance) to spread out the
distribution of wealth, endogenously sorting agents into some who earn mostly from labor and others
who earn mostly from investment. But for present purposes, sorting agents exogenously into two classes
seems a simpler and clearer way of achieving a realistic wealth distribution.
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and workers. Second, short term contracts give rise to a strategic savings motive for
workers, who accumulate assets to improve their bargaining position in future wage ne-
gotiations. This induces overaccumulation of assets, especially by workers who currently
hold few assets. Neither this short-term contracting nor perfectly efficient long-term con-
tracts look very realistic. We adopt this contracting environment because we want to
take seriously the possible effects of saving on the bargaining problem, and modeling
this inside a long-term contract appears intractable at the moment.

2.2 Timing

The model is written in discrete time. The sequence of events in each period is the
following:

1. The aggregate productivity shock is realized

2. Firms post vacancies

3. Matching takes place

4. Wage is negotiated for the current period

5. Firms rent capital and produce

6. Households consume

7. Job separation shocks are realized

2.3 Production Technology

The output Yti of a match (a single-worker firm) indexed by i at time t is given by

Yti = F (kti, zt) = ztAkα
ti (1)

where zt is an aggregate productivity factor and A is a constant. Physical capital can
be adjusted frictionlessly by the firm, after negotiating the wage. This means the firm
chooses capital by solving the static problem

max
k

F (k, zt) − (rt + δ)k = z
1

1−α

t A

(

α

rt

)
α

1−α

(2)

with first order condition
Fk(kti, zt) = rt + δ (3)

Notice therefore that as long as capital can be adjusted without frictions, and agents
have linear utility, the labor market dynamics of a matching model with capital are
equivalent to those of a model without capital, except that the percentage variation of
the productivity shock is rescaled by the factor (1 − α)−1. Differences arise if savers
have concave utility, because then the interest rate varies in (2). Our numerical work
will study the sign and size of these interest rate effects. Difference would also arise if
we considered lags in the adjustment of capital, which would lead to a holdup problem,
but these issues are beyond the scope of this paper.

The product of labor Y lab
ti (both marginal and average) is what is left after the rental

cost of capital:
Y lab

ti = (1 − α)ztAkα
ti (4)

This has to be split between firm and worker, according to the bargaining outcome
described in Section 2.7. We assume that aggregate productivity follows a first order
autoregressive process in logs:

log zt+1 = ρz log zt + εt+1 (5)
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2.4 Workers and entrepreneurs

In this economy, there are two types of assets: capital and shares of firms. Firms that
currently have a worker have a positive value, because they earn part of the match
surplus.

The are also two types of households, entrepreneurs and workers. These two types of
households have the same preferences, but we will assume they have different opportu-
nities in financial markets. Entrepreneurs own the firms and they can also own capital.
They have no labor endowment and therefore suffer no idiosyncratic shocks, so that we
can talk about a representative entrepreneur in the economy. Since entrepreneurs are
the only households that are allowed to own firms, and since they are all alike, we can
assume without loss of generality that firms cannot be traded. The capital holdings of
entrepreneurs then follow the dynamic equation

Kf
t = (1 + r(t))Kf

t−1 + πt − Cf (t) (6)

where πt is the cash flow that entrepreneurs receive from the firms in period t. Their
return on their capital holdings, r(t), is the marginal product of capital. The only
decisions that entrepreneurs make is how much to save in capital. The corresponding
Euler equation is

U ′(Cf (Ω)) = β EΩ′

(

1 + r(Ω′)
)

U ′(Cf (Ω′))

Workers cannot own firms, they can only own capital. In order to obtain a realistic
calibration of the capital holding of workers, we introduce the following capital market
friction. We assume that workers do not obtain the full net marginal product of capital.2

They have to pay an intermediation (or agency) cost φ, such that rw(t) = r(t)−φ. The
capital holdings of employed households evolve according to

k̇ = rw(Ω)k + w (k; Ω) − Ce
Ω(k) (7)

For the unemployed we have

k̇ = rw(Ω)k + b − Cu
Ω(k) (8)

In the frictionless case φ = 0, we know that rw∗ = r∗ < β−1 − 1 because of precau-
tionary saving. In this case, entrepreneurs are driven out of the capital market in the
deterministic steady state, since they have no precautionary savings motive. Then their
only assets are firms, which they cannot trade with workers.

2.5 Matching Technology

The unemployment rate at the beginning of period t, which here is simply the number of
unemployed workers, is denoted by Ut. Employment (1−Ut) changes over time according
to

(1 − Ut+1) = (1 − σ)(1 − Ut) + Mt (9)

Here σ is the exogenous rate at which existing matches are destroyed. New job matches
Mt are created according to the matching function

Mt = µUλ
t V 1−λ

t (10)

where Vt is the number of open vacancies, and µ is a constant. Defining labor market
tightness as θ = Vt

Ut
, we can write the probability of a firm to fill the vacancy as pF

t =
Mt

Vt
= µθ−λ and the probability of a worker to find a job as pW

t = Mt

Ut
= θpF

t = µθ1−λ =

µ1/λpF (λ−1)/λ
t .

2Alternatively one could assume that workers are more impatient. We prefer a specification where
workers and entrepreneurs differ in the constraints that they face, not in their preferences.
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2.6 Value functions

The solution of the model can be characterized by the value functions of workers and
firms. Let V e (k; Ω) and V u (k; Ω) denote the value functions of an employed and an
unemployed worker, respectively. The value function of the firm is the value of a filled
vacancy, denoted by J (k; Ω). The values are function of the current aggregate state,
which we will characterize later, and the capital holding of the worker. The worker’s
level of capital affects the value of the firm through the wage bargaining, cf. Section 2.7.
The value functions satisfy

V e (k; Ω) = max
c

{

U(c) + β EΩ′

[

(1 − σ)V e
(

(1 + rw(Ω))k + w (k; Ω) − c; Ω′
)

+ σV u
(

(1 + rw(Ω))k + w (k; Ω) − c; Ω′
)

]}

(11)

V u (k; Ω) = max
c

{

U(c) + β EΩ′

[

pW (Ω′)V e
(

(1 + rw(Ω))k + b − c; Ω′
)

+ (1 − pW (Ω′))V u
(

(1 + rw(Ω))k + b − c; Ω′
)

]}

(12)

J (k; Ω) = U ′(Cf )
(

Y lab
t − w (k; Ω)

)

+ β(1 − σ) EΩ′ J
(

ke(k,w; Ω);Ω′
)

(13)

As defined in (4), Y lab
t is the match output after subtracting capital costs. The fact that

there is a representative entrepreneur makes the value of the firm in (13) well-defined:
all firms discount their cash flow with the marginal utility of this entrepreneur.

It is instructive to look at the Euler equation of the households in this model. Let us
abbreviate by Ce (k; Ω) ≡ Ce ((1 + rw(Ω))k + w; Ω) and Cu (k; Ω) ≡ Cu ((1 + rw(Ω))k + w; Ω)
the optimal consumption choices of an employed and an unemployed worker, respec-
tively, where wage and interest rate are a function of the state variables Ω and k.
Similarly, ke

Ω(k) ≡ (1+ rΩ)k +w (k; Ω)−Ce (k; Ω) and ku
Ω(k) ≡ (1+ rΩ)k + b−Cu (k; Ω)

denote the corresponding savings functions. From the envelope conditions

V̇ e
Ω(k) = U ′(Ce (k; Ω))(1 + rΩ + w′

Ω(k)) (14)

V̇ u
Ω (k) = U ′(Cu (k; Ω))(1 + rΩ) (15)

we get the household Euler equations:

U ′(Ce (k; Ω)) = β EΩ′

[

(1 − σ)

(

1 + rw(Ω′) +
∂w (k; Ω′)

∂k

)

U ′(Ce
(

ke(Ω, k); Ω′
)

)

+ σ
(

1 + rw(Ω′)
)

U ′(Cu
(

ke(Ω, k); Ω′
)

)
]

(16)

U ′(Cu (k; Ω)) = β EΩ′

[

pW (Ω′)

(

1 + rw(Ω′) +
∂w (k; Ω′)

∂k

)

U ′(Ce
(

ku(Ω, k); Ω′
)

)

+ (1 − pW (Ω′))
(

1 + rw(Ω′)
)

U ′(Cu
(

ku(Ω, k); Ω′
)

)
]

(17)

The reward to saving has two components in this model: the interest rate rw(Ω′), and
the increased wage that the worker will be able to bargain next period if she has a
better outside option due to higher assets. We will show later that for workers with few
assets, the last component is much more important than the interest rate. Therefore,
in steady state there will be very few workers with very low wealth holdings. This
increased savings motive is a consequence of the inefficient contracting environment.
Only short-term contracts are available, therefore households make a strong effort to
save and improve their bargaining position in future periods. An efficient long-term
contract between worker and employer would specify both wages and consumption, to
avoid this strategic behavior on the part of the worker.
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2.7 Bargaining

Workers and firms share the surplus from the match. To define the surpluses, let us first
write the value and consumptions functions such that the dependence on the wage w
explicit. The worker’s value, conditional on the current wage, is defined as

Ṽ e(k,w; Ω) = U(Ce(k,w; Ω))+β EΩ′

[

(1 − σ)V e
(

ke(k,w; Ω);Ω′
)

+ σV u
(

ke(k,w; Ω);Ω′
)]

Similarly, the firm’s value, conditional on the current wage, is

J̃(k,w; Ω) = U ′(Cf (Ω))(MPL − w) + (1 − σ) EΩ′ J
(

ke(k,w; Ω);Ω′
)

(18)

The Nash bargaining wage maximizes a weighted product of the worker’s and the firm’s
surpluses:

w(k) = argmax
w

(

Ṽ e(k,w; Ω) − V u (k; Ω)
)α

J̃(k,w; Ω)1−α (19)

where α denotes the relative bargaining power of workers. In some of our simulations,
we will assume α is stochastic. If so, it will be an AR(1) process in logs, just like the
technology shock:

log(αt+1/α
∗) = ρα log(αt/α

∗) + εα
t+1 (20)

The FOC for the bargaining problem is

Ṽ e(k,w; Ω) − V u (k; Ω)

α∂Ṽ e(k,w;Ω)
∂w

= −
J̃(k,w; Ω)

(1 − α)∂J̃(k,w;Ω)
∂w

(21)

From the envelope condition of the household problem we know that

∂Ṽ e(k,w; Ω)

∂w
= U ′(Ce(k,w; Ω)) (22)

Differentiating (18) we get

∂J̃(k,w; Ω)

∂w
= −U ′(Cf (Ω)) + (1 − σ)

(

1 −
∂Ce(k,w; Ω)

∂w

)

EΩ′ Jk

(

ke(k,w; Ω);Ω′
)

(23)

Although employed workers are never liquidity constrained in our simple model, the fact
that unemployed households may be liquidity constrained creates a serious technical
difficulty with the wage bargaining condition. Denote by kc(Ω)) the point where the
constraint starts binding for the unemployed. For low levels of k, an employed household
will not save enough to end up with more than kc(Ω

′), and therefore there is a k0 such
that ke(k0, w; Ω) = kc(Ω

′). The consumption decision of the employed is connected to
the consumption of the unemployed through the Euler equation (16). From that we see

that Ce (Ω; k) has a kink at k = k0. This means that ∂Ce(k,w;Ω)
∂w has a discontinuity

at k = k0 (with w equal the equilibrium wage). which enters the rhs of (21) through
(23), and induces a discontinuity in the wage function, then in the firm’s value function,
etc. Discontinuities in the wage and value functions cannot be handled for at least two
reasons. First, our computational approach is based on smooth approximation. Second,
discontinuities destroy the convexity of the household problem.

A natural way to avoid this problem is to go to the continuous time limit. Notice
that the liquidity constraint kicks in at a level of assets roughly equal to one period of
labor income. If the time period is one minute, it appears at an asset level of about 10
cents. In the continuous time limit, the kink disappears. That means, the numerical
error from ignoring the kink is negligible if the time period is very small. In the limit,
∂Ce(k,w;Ω)

∂w → 0, and ke(k,w; Ω) → k. Then (21), using (22) and (23), reduces to
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V e (k; Ω) − V u (k; Ω)

αU ′(Ce (k; Ω))
=

J (k; Ω)

(1 − α)[U ′(Cf (Ω)) − Jk (k; Ω′)]
(24)

We will set the time period of the model to 1/32nd of a week, just over one hour of
work. The error from using the continuous time limit (24) in the wage bargaining is
then negligible.

2.8 Closing the model

Denote by Φe
t (k) and Φu

t (k) the end-of-period cross-sectional distribution function of
capital for employed and unemployed workers, respectively. The are scaled such that
Ut, the unemployment rate in period t after matching took place, is given by

Ut = Φu
t (∞) =

∫

∞

k
1 dΦu

t (k) (25a)

1 − Ut = Φe
t (∞) =

∫

∞

k
1 dΦe

t (k) (25b)

The zero-profit condition for vacancy creation is

κ = pF (Ω)

∫

∞

k
J (k; Ω) dΦu

t−1(k) (26)

where κ is the flow cost of keeping a vacancy open. The firms are matched in period t
against the pool of workers who were unemployed at the end of t − 1. Note the firms
can find a worker and start producing in the same period when the post a vacancy.

The aggregate capital stock at the end of period t − 1, is given by

Kt−1 =

∫

∞

k
k dΦe

t−1(k) +

∫

∞

k
k dΦu

t−1(k) + Kf
t−1 (27)

This will be used for production in period t. The profits (or cash flow) from firms can
now be written as total production Yt minus the remuneration of capital, the total wage
bill

∫

∞

k Wt(k) dΦe
k()

πt = Yt − r(t)Kt−1 −

∫

∞

k
Wt(k) dΦe

t (k) − κVt (28)

The details of the distributional dynamics resulting from the consumption decisions
of entrepreneurs and employed and unemployed workers are spelled out in Appendix A.

3 Parameter values

The US and the big European countries differ substantially in their average unemploy-
ment rates, and even more in median unemployment durations. They also display large
differences in median asset holdings. All these facts are relevant for our model, since
the effectiveness of self-insurance against unemployment depends on unemployment du-
ration relative to the typical stock of liquid asset holdings. We therefore investigate
several parameter combinations, which include a calibration to US data, a calibration
to the most recent German data, and a hybrid ’worst case’ that combines German un-
employment with US asset levels. We think addressing a potential worst case is useful,
because we want to know whether there are any realistic circumstances under which
saving behavior would have nontrivial implications for labor market dynamics.
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Common parameters

We first describe the parameters that are common to both the US and German calibra-
tions. The model period is set to 1536−1 years, where 48 × 32 = 1536, so that a period
represents slightly more than one hour of production. The time discount rate is set to
5% annually, so β = 0.95−1536. Depending on the specification considered, capitalists
and workers may have linear utility, or the following CRRA utility function:

U(c) =

{

c1−γ
−1

1−γ if γ 6= 1

log(c) if γ = 1
(29)

When both capitalists and workers have CRRA utility (the cases MPCRRA and WSav,
defined below), we use the same parameter γ for both.

For the benefit parameter we use b = 0.4. This is lower than what Costain and
Reiter (2007) advocate, but we think that a lower value is interesting in the present
context, to make the utility impact of unemployment more severe. For the elasticity
of matches with respect to labor market tightness we choose 0.4159, which means the
elasticity of matches to unemployment is λ = 0.5841. This parameter was estimated
from a regression of the detrended log of job finding probability on detrended tightness.3

Workers’ bargaining share α is recalibrated in each case we simulate so that on average,
the wage is 0.96 times labor productivity. This level of wages suffices so that produc-
tivity fluctuations cause the observed level of unemployment variation (Hagedorn and
Manovskii 2005) without further elaborating the model to include elements like wage
stickiness or embodied technical change. Varying this calibration to 0.95 or 0.97 does
not change any important result here.

The capital share in production is set to α = 1/3. We target a steady state capital-
output ratio of 3 years (KOR ≡ K

Y = 3 × 1536), a marginal product of capital of
r∗ = 1/β − 1, and a labor productivity of 1. This is achieved by setting δ = α

KOR − r∗,
choosing the capital-labor ratio as KLR = 1

r∗+δ
α

1−α , and A = 1
(1−KLR)α .

The autoregressive parameter for fluctuations in TFP and bargaining power are both
set to 0.95 quarterly: ρz = ρα = 0.954/1536 .

US calibration

Following recent papers in the matching literature, we assume a job separation rate of
40% annually, therefore σ = 0.4/1536. The vacancy cost parameter is set such that
the steady state unemployment rate is U∗ = 5.67 percent, the average in the US in
the period 1951–2003. From that we get the steady state job finding probability as
pW∗ = σ 1−U∗

U∗ . We can normalize the matching efficiency to µ = 1. This parameter only
scales the absolute number of vacancies, and the firms’ probability of finding a worker,
which are irrelevant for our purpose.

We calibrate the model such that the mean asset holdings of workers equal the
financial assets of the US household with median net wealth. From Bertaut and Starr-
McCluer (2001, Table 2), we see that median net wealth in the US in 1998 was $71100. In
Table 5 we see that total financial assets of the second net-wealth quintile are the fraction
19.4/53.0 of net wealth, or $26053. In 1998, the U.S. Bureau of the Census estimates
there were 102528 households. GDP in 1998 was $8747 trillion, which gives a GDP of
$85313 per household. Therefore we estimate median financial assets of households as

3The sample period is 1951:1-2004:4. Tightness is measured as help wanted advertisement (HELP-
WANT) divided by civilian unemployment age 16+ (UNEMPLOY); the acronyms are the identifying
codes at FRED. The series for job finding probability was constructed by Robert Shimer and is available
on his website, http://robert.shimer.googlepages.com/flows. All data are detrended by HP filter with
smoothing parameter 100000.
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26053/85313=0.3054 years of GDP per household. We thus choose the intermediation
cost φ so that in the steady state, the mean asset holdings of a worker are 0.3054 years
of GDP per capita. This is achieved by setting the cost to φ = 0.693 annually, which
seems perfectly realistic. A problem is that the model does not say what is GDP per
capita, because it does not determine the number of capitalists compared to the number
of workers. But since capitalists are homogenous, all the capitalists’ assets could be held
by a single individual, as long as it behaves competitively. We therefore stipulate that
the mass of capitalists is zero, and GDP per capita equals GDP per worker.

German calibration

For separation rates or unemployment duration, we do not have historical statistics
available for Germany. We therefore use the most recent data. For workers who became
unemployed in 2006, the average unemployment duration was 41.4 weeks. We therefore
set the job finding probability to pW = 41.4

52 /1536. The unemployment rate was U∗ =

10.7 percent. This gives a separation rate of σ = pW U∗

1−U∗ = 0.0954/1536. This means that
the separation rate in Germany is only one fourth of what it is in the US.

Median net wealth in Germany 1993 was 120188 DM (Boersch-Supan and Eymann
2001, fn. 36). From Table 7 we see that financial assets (minus life-insurance and long-
term savings contracts) are 64.4 percent of net worth (weighted average of 64.3 percent in
West Germany, and 64.8 percent in East Germany) which gives 77521DM. The number
of households in the microcensus 1993 was 36.23 million. GDP in 1993 was 1694.37
billion euros = 3313.9 billion DM. GDP per household was therefore, 91468 DM, so
financial assets were 84.75% of annual GDP per household.

The stark contrast between the US and the German calibration may be due to
differences in measurement rather than real differences. However, since we want to
check the robustness of our results to changes in parameters, these big variations are
not unwelcome.

Steady state

In summary, in all simulations certain common and country-specific parameters are fixed
as described above. Then for each simulation the workers’ bargaining share α and the
vacancy cost κ are reset so that the steady state wage is 0.96, and so that steady state
unemployment equals its country-specific mean.

4 Results

When we rewrite the Mortensen-Pissarides model with concave rather than linear utility,
we are altering several things simultaneously: we are changing the utility functions of
capitalists and workers, we are taking a stand on the asset markets open to each class of
agent, and we are taking a stand on how asset holdings affect the bargaining game. To
untangle the effects caused by each of these changes, we compare four different models.
The first is the standard Mortensen-Pissarides model with linear technology and linear
utility, denoted in the graphs and tables by MP. In the second model, capitalists have
CRRA utility with relative risk aversion γ. Workers still have linear utility, but are
excluded from the capital market, so the interest rate varies because it is determined by
the consumption smoothing of the capitalists. This model is denoted by MPKap. In the
third model, both capitalists and workers are risk averse, with the same degree of relative
risk aversion. However, workers are again excluded from the capital market, so they have
no way of saving to protect themselves against labor market risk. Therefore workers’
risk aversion in this case only alters the model through its effects on the bargaining
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game. This model is denoted by MPCRRA. Finally, the fourth model is the full model
where households are allowed to save, denoted by WSav.

4.1 Dynamics

Table 1 reports moments for the benchmark calibration, when the model is driven ei-
ther by technology shocks or shocks to workers’ bargaining power. Impulse response
functions for these two shocks are shown in Figures 3 and 4. As in the paper of Hall
(2006), the main message of the results is that all the models have very similar labor
market dynamics. Responses to the productivity shock are somewhat more persistent
when savers have concave utility, because in these cases, the adjustment of capital is
slowed down by the consumption smoothing motive. The effect on capital is strongest in
the WSav model, where capital accumulation feeds into the worker’s wage, which then
reinforces capital accumulation. However, the resulting persistence for output, wages,
and unemployment is not very different between the WSav model and the two other
cases with variable interest rates. The incentive to adjust capital is not as strong after
a bargaining shock (it is caused only by changes in employment, not changes in pro-
ductivity) so the persistence of the impulse responses varies less with concave utility for
these shocks.

The other major differences are found in model MPCRRA, where workers are risk
averse and have no access to the capital market. This case gives substantially more
variation in vacancies, tightness, and unemployment. It gives less wage variation in
response to productivity shocks, and more in response to bargaining power shocks. To
understand these findings, note that both workers and capitalists have the same CRRA
preferences, with the same value of γ. Nonetheless, workers are effectively more risk
averse in the MPCRRA case, because they face uninsured idiosyncratic employment
risk, whereas capitalists only face the (much smaller) variation in aggregate productivity.
This difference increases workers’ expected marginal utility of any given payment of
goods, which means the bargaining problem results in a lower wage, ceteris paribus.
However, for comparability in terms of the observable aspects of the steady state, we
reset the worker’s bargaining power to maintain the same average wage in each of our
simulations. Thus, the MPCRRA case implies a higher worker’s share α, making the
capitalists’ share of surplus smaller and more volatile. Capitalists therefore vary hiring
more, increasing unemployment volatility. This is similar to the effect of unemployment
benefits on labor market volatility found in Costain and Reiter (2007) and Hagedorn
and Manovskii (2005).

4.2 Parameter variations

We explore several other parameter configurations besides the baseline US calibration
with logarithmic utility. First, we check the effects of higher risk aversion by increasing γ
to 4. Second, we compare our US calibration to a German calibration in which the higher
unemployment rate and longer unemployment spells are compensated by higher average
asset holdings. Finally, we also explore a hybrid version in which market incompleteness
could potentially be more important: an economy with high unemployment like that in
Germany, but low asset holdings like those in the US.

Table 2 shows how the simulated moments change when when relative risk aversion
increases to γ = 4, and Figure 5 shows the resulting impulse response functions for
a productivity shock. The findings are similar to those in the logarithmic utility case
of Fig. 3, except that the increased volatility of labor market flows in the MPCRRA
case is amplified, especially in the case of shocks to bargaining power. In other words,
the increased effective risk aversion of workers is even more important with γ = 4 than
under logarithmic utility. Similar findings are reported by Rudanko (2006), whose model
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shares the assumptions of our MPCRRA case, with risk averse workers who are unable
to save. Like us, Rudanko reports that increasing risk aversion in this specification
stabilizes the wage in the face of productivity shocks, while increasing the volatility
of tightness and unemployment, thus partially solving the volatility ’puzzle’ of Shimer
(2005). Her simulations do not compensate the rise in γ by increasing η to hold fixed
the average wage, which suggests that this is not crucial for our results.

Table 3 shows somewhat greater persistence under the German calibration, con-
sistent with the longer unemployment spells in this case. Also, we see that shocks to
bargaining power have a substantially larger effect when starting from a calibration with
high unemployment. Figures 6 and 7 show the impulse response functions from the hy-
brid, high-risk calibration with high unemployment and low asset holdings. The effects
of technology shocks are almost unchanged from the baseline US calibration. As in the
German case, the fact that initial unemployment is high makes bargaining power shocks
roughly twice as powerful as in the US baseline of Fig. 4. Still, all qualitative effects in
the various parameterizations considered are fundamentally similar to the baseline case.

4.3 Redistributions

Another issue to study in this heterogeneous agent model is the effect of redistributions.
Of course, this is only relevant in the WSav setup, since in the other cases considered the
workers either have no incentive or no ability to save, and the capitalists, as mentioned
before, are effectively a representative agent. In the WSav model, the distribution of
assets affects investment, and affects wages, so this is another reason why taking saving
into account can potentially have implications for labor market dynamics. Of course,
there are many possible ways of redistributing assets, which can have different effects.

Thus, Figure 8 shows how unemployment and capital respond to a variety of changes
in the state variables. These impulse responses can be interpreted as the transition paths
to steady state if the model starts out of steady state. We only look at variations in
initial conditions that represent a wealth redistribution. All in all, we investigate the
effect of 8 different redistributions:

• Redistribution from employed to unemployed workers, at the first and 99th per-
centiles of the respective distributions (“E2U, q=0.01” and “E2U, q=0.99”, re-
spectively).

• Redistribution among the unemployed workers, from the workers at percentile
99 to those at percentile 1 (“U, q=0.99 to q=0.01”), and from percentile 75 to
percentile 25 (“U, q=0.75 to q=0.25”).

• Redistribution among the employed workers, from the workers at percentile 99 to
those at percentile 1 (“E, q=0.99 to q=0.01”), and from percentile 75 to percentile
25 (“E, q=0.75 to q=0.25”).

• Redistribution from capitalists to employed workers, at the first and at the 99th
percentile of the distribution of employed workers (“F2E, q=0.01” and “F2E,
q=0.99”, respectively).

In each case, the size of the redistribution is scaled so as to be equivalent to 1 per-
cent of annual GDP. Notice that the scaling is only a device to help with quantitative
interpretation; a redistribution of this amount is not really feasible, since not all the
corresponding groups actually have that many assets.

In the left panels of Fig. 8, we see that by far the most powerful redistributions are
those to the poorest unemployed. These redistributions raise unemployment dramati-
cally by raising the outside option of these workers, making them much more expensive
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to hire. Since wages and unemployment are rising, capitalists have a strong incentive
to decrease investment. Also, the new owners of the redistributed capital have a much
higher marginal propensity to consume. For both reasons, there is a large and persis-
tent fall in capital. The graph shows that it does not matter very much from whom this
transfer is taken. Transfers from the employed to the richest unemployed, on the other
hand, have little effect on the labor market.

The right panels show that transfers from the richest to the poorest employed also
raise unemployment and drive down capital accumulation, though the effects are an
order of magnitude smaller than those seen in the left panels. The mechanism is the
same: outside options and wages are raised substantially for those workers who would
be the cheapest to hire, and capital is redistributed to agents with a lower propensity
to save.

Finally, the right panels also show the effects of redistributions from the capitalists
to the employed. In this case, the effects differ depending on who among the employed
receives the transfer. If the poorest employed agents receive the transfer, then the
effects are like those seen already. But the richest employed agents, because of their
precautionary saving incentive, have a higher marginal propensity to save than the
capitalists. Also, as seen in Fig. 2, giving them extra wealth has little effect on their
wages. So this transfer causes saving and investment to rise; the increased capital makes
it worthwhile to hire more too, so unemployment falls.

4.4 The relevance of distributional dynamics

The examples in Fig. 8 show that some changes in the distribution of assets can have
nontrivial effects on labor market dynamics. This suggests that algorithms for com-
puting distributional dynamics on the basis of low-dimensional representations could
potentially be inaccurate. Therefore, Table 4 investigates to what extent current job-
finding probability and next period’s capital can be predicted by a small number of
state variables. Calculating these variables is an essential part of any algorithm, and in
particular implementing the Krusell and Smith (1998) algorithm for this model would
require a prediction of these variables.

We consider predictions based on the unemployment rate, the exogenous driving
force (for Kt+1, this means conditioning on both time t and t + 1 aggregate shocks),
and various statistics that characterize the wealth distribution. We provide both the
R2 and the relative standard error “RelStd”, defined as the standard deviation of the
prediction error, divided by the standard deviation of the first difference of the predicted
series. Note that we can calculate these error statistics to high accuracy because our
algorithm uses a much higher-dimensional representation of the equilibrium (savings are
represented on a grid of 500 points each for the employed and the unemployed). The first
four columns of Table 4 refer to the case where the model is driven only by technology
shocks, the last four columns to the case with bargaining shocks only.

Unsurprisingly, predictions based only on the aggregate shock and the unemployment
rate are very poor. More interestingly, a prediction which also uses aggregate capital
(third row of the table) still achieves a low level of accuracy, with an error that is almost
always greater than 10% of the variation that is being predicted (i.e. RelStd≥ 10−1).
Decomposing aggregate capital into the parts held by capitalists, the employed, and the
unemployed often achieves a nontrivial improvement in RelStd, typically by a factor of
five or ten when the model is driven by productivity shocks (or for predicting pW in the
bargaining shocks case). But note that even using all five regressors shown in the table,
the prediction of capital in the bargaining shocks model is disappointing. None of the
specifications shown achieves a relative standard deviation lower than 10%, suggesting
that a higher-dimensional representation is essential for accuracy in computing this
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version of the model.
It is clear why prediction on the basis of a few moments should work better for sim-

ulating technology shocks than for bargaining shocks. Technology shocks raise profits
and wages simultaneously, so they have little distributional effect on the entrepreneurs
and employed workers. Unemployed workers, meanwhile, hold little capital. Therefore,
these shocks affect mean capital much more than they affect the shape of the capital dis-
tribution. Bargaining shocks, on the other hand, redistribute wealth from entrepreneurs
to employed workers. It would therefore be very surprising if mean capital were a suffi-
cient state variable; in fact we see that even knowing the mean capital of each class of
agents is far from sufficient when bargaining shocks drive the model. While it is unclear
whether bargaining shocks per se are empirically interesting, this general point seems
likely to remain true for understanding any time-varying redistributional mechanism.
Thus high-dimensional simulation methods could well prove crucial for analyzing many
fiscal or social welfare policies potentially applicable to unemployment over the business
cycle.

5 Conclusions

[TO BE ADDED]
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Model Y wage MPL V ac θ pW U

Model driven by technology shock

Standard deviations

MP 1.87 1.79 1.82 1.97 3.10 1.29 1.18
MPKap 1.90 1.78 1.83 1.97 3.09 1.29 1.18
MPCRRA 1.91 1.75 1.82 2.44 3.84 1.60 1.47
WSav 1.97 1.87 1.90 1.99 3.15 1.31 1.21

Relative standard deviations

MP 1.00 0.96 0.98 1.05 1.66 0.69 0.63
MPKap 1.00 0.94 0.96 1.04 1.63 0.68 0.62
MPCRRA 1.00 0.92 0.96 1.28 2.01 0.84 0.77
WSav 1.00 0.95 0.96 1.01 1.60 0.66 0.61

Autocorrelation

MP 0.90 0.90 0.90 0.85 0.90 0.90 0.93
MPKap 0.90 0.90 0.90 0.85 0.90 0.90 0.93
MPCRRA 0.90 0.90 0.90 0.85 0.90 0.90 0.93
WSav 0.91 0.91 0.91 0.86 0.91 0.91 0.94

Model driven by bargaining shock

Standard deviations

MP 0.05 0.12 0.00 2.11 3.32 1.38 1.26
MPKap 0.05 0.14 0.03 2.08 3.27 1.36 1.25
MPCRRA 0.06 0.17 0.03 2.53 3.97 1.65 1.51
WSav 0.05 0.14 0.03 2.09 3.28 1.37 1.25

Relative standard deviations

MP 1.00 2.31 0.00 41.50 65.24 27.13 24.89
MPKap 1.00 2.73 0.49 40.10 63.04 26.22 24.05
MPCRRA 1.00 2.73 0.48 40.08 63.00 26.20 24.03
WSav 1.00 2.96 0.55 42.83 67.24 27.97 25.62

Autocorrelation

MP 0.93 0.90 0.97 0.85 0.90 0.90 0.93
MPKap 0.94 0.91 0.93 0.85 0.90 0.90 0.93
MPCRRA 0.94 0.91 0.93 0.85 0.90 0.90 0.93
WSav 0.93 0.91 0.94 0.85 0.90 0.90 0.93

Table 1: Comparison of models, US calibration, γ = 1
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Model Y wage MPL V ac θ pW U

Model driven by technology shock

Standard deviations

MP 1.77 1.70 1.73 1.87 2.94 1.22 1.12
MPKap 1.79 1.68 1.73 1.86 2.92 1.22 1.12
MPCRRA 1.85 1.53 1.70 4.26 6.70 2.79 2.56
WSav 1.86 1.72 1.78 2.28 3.58 1.49 1.37

Relative standard deviations

MP 1.00 0.96 0.98 1.05 1.66 0.69 0.63
MPKap 1.00 0.94 0.96 1.04 1.63 0.68 0.62
MPCRRA 1.00 0.83 0.92 2.30 3.62 1.51 1.38
WSav 1.00 0.92 0.96 1.22 1.92 0.80 0.74

Autocorrelation

MP 0.90 0.90 0.90 0.85 0.90 0.90 0.93
MPKap 0.90 0.90 0.90 0.85 0.90 0.90 0.93
MPCRRA 0.91 0.90 0.90 0.85 0.90 0.90 0.93
WSav 0.91 0.91 0.91 0.84 0.90 0.90 0.93

Model driven by bargaining shock

Standard deviations

MP 0.05 0.12 0.00 2.18 3.44 1.43 1.32
MPKap 0.05 0.15 0.03 2.15 3.40 1.41 1.30
MPCRRA 0.20 0.53 0.10 7.73 12.21 5.08 4.68
WSav 0.05 0.16 0.03 2.20 3.48 1.45 1.33

Relative standard deviations

MP 1.00 2.30 0.00 40.99 64.78 26.94 24.82
MPKap 1.00 2.69 0.50 39.29 62.09 25.82 23.79
MPCRRA 1.00 2.69 0.49 39.23 61.98 25.78 23.74
WSav 1.00 3.23 0.67 45.75 72.22 30.04 27.67

Autocorrelation

MP 0.94 0.91 0.97 0.86 0.91 0.91 0.94
MPKap 0.94 0.92 0.94 0.86 0.91 0.91 0.94
MPCRRA 0.94 0.91 0.94 0.86 0.91 0.91 0.94
WSav 0.93 0.93 0.95 0.86 0.91 0.91 0.94

Table 2: Comparison of models, US calibration, γ = 4
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Model Y wage MPL V ac θ pW U

Model driven by technology shock

Standard deviations

MP 2.17 2.02 2.10 2.50 3.38 1.41 1.09
MPKap 2.21 1.99 2.10 2.49 3.38 1.41 1.10
MPCRRA 2.23 1.93 2.09 3.19 4.33 1.80 1.40
WSav 2.32 2.11 2.20 2.67 3.66 1.52 1.20

Relative standard deviations

MP 1.00 0.93 0.97 1.15 1.55 0.65 0.50
MPKap 1.00 0.90 0.95 1.13 1.53 0.64 0.49
MPCRRA 1.00 0.87 0.93 1.43 1.94 0.81 0.63
WSav 1.00 0.91 0.95 1.15 1.58 0.66 0.52

Autocorrelation

MP 0.93 0.93 0.93 0.88 0.93 0.93 0.98
MPKap 0.93 0.93 0.93 0.89 0.93 0.93 0.98
MPCRRA 0.93 0.93 0.93 0.88 0.93 0.93 0.98
WSav 0.94 0.94 0.93 0.89 0.94 0.94 0.98

Model driven by bargaining shock

Standard deviations

MP 0.17 0.32 0.00 4.81 6.48 2.70 2.07
MPKap 0.18 0.39 0.08 4.72 6.35 2.64 2.03
MPCRRA 0.23 0.51 0.10 6.10 8.19 3.41 2.62
WSav 0.16 0.41 0.09 4.87 6.51 2.71 2.05

Relative standard deviations

MP 1.00 1.87 0.00 28.27 38.06 15.83 12.18
MPKap 1.00 2.24 0.45 26.91 36.19 15.05 11.57
MPCRRA 1.00 2.25 0.45 26.88 36.14 15.03 11.55
WSav 1.00 2.54 0.55 30.01 40.14 16.70 12.64

Autocorrelation

MP 0.98 0.93 0.92 0.89 0.93 0.93 0.98
MPKap 0.98 0.94 0.98 0.88 0.93 0.93 0.98
MPCRRA 0.98 0.94 0.98 0.88 0.93 0.93 0.98
WSav 0.98 0.95 0.98 0.88 0.93 0.93 0.98

Table 3: Comparison of models, German calibration, γ = 1
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Productivity shocks Bargaining shocks
pW Kt+1 pW Kt+1

Regressors 1 − R2 RelStd 1 − R2 RelStd 1 − R2 RelStd 1 − R2 RelStd

US calibration

Z,U 5.11e-3 3.49e-1 1.31e-1 7.36e+0 3.09e-4 7.34e-2 2.60e-1 4.52e+0
Z,U,K(U) 6.50e-4 1.24e-1 3.54e-4 3.82e-1 3.08e-5 2.32e-2 7.25e-4 2.39e-1
Z,U,K(total) 6.21e-4 1.22e-1 9.40e-5 1.97e-1 3.72e-5 2.55e-2 4.44e-4 1.87e-1
Z,U,K(total),K(U) 5.77e-4 1.17e-1 4.51e-5 1.37e-1 4.08e-6 8.44e-3 4.43e-4 1.86e-1
Z,U,K(E),K(U),K(F) 8.45e-6 1.42e-2 5.39e-7 1.49e-2 3.22e-7 2.37e-3 4.23e-4 1.82e-1

German calibration

Z,U 9.47e-3 5.28e-1 1.74e-1 1.08e+1 3.57e-4 6.53e-2 3.72e-1 4.82e+0
Z,U,K(U) 1.66e-3 2.21e-1 1.13e-3 8.72e-1 6.70e-6 8.94e-3 1.43e-3 2.99e-1
Z,U,K(total) 1.21e-3 1.88e-1 3.52e-5 1.54e-1 8.56e-6 1.01e-2 5.62e-4 1.87e-1
Z,U,K(total),K(U) 4.37e-4 1.13e-1 3.50e-5 1.53e-1 4.39e-6 7.24e-3 2.55e-4 1.26e-1
Z,U,K(E),K(U),K(F) 5.47e-5 4.01e-2 7.28e-7 2.21e-2 2.40e-6 5.36e-3 2.15e-4 1.16e-1

High unemployment, low assets calibration

Z,U 7.29e-4 9.52e-2 4.29e-1 1.43e+1 8.65e-4 9.71e-2 1.52e-1 3.67e+0
Z,U,K(U) 2.42e-4 5.49e-2 4.79e-4 4.79e-1 8.60e-4 9.68e-2 2.40e-2 1.46e+0
Z,U,K(total) 2.47e-4 5.54e-2 1.03e-4 2.23e-1 7.90e-4 9.28e-2 6.79e-4 2.46e-1
Z,U,K(total),K(U) 2.23e-4 5.27e-2 8.10e-5 1.97e-1 7.46e-6 9.02e-3 5.57e-4 2.22e-1
Z,U,K(E),K(U),K(F) 2.07e-4 5.07e-2 7.64e-6 6.05e-2 8.16e-7 2.98e-3 2.50e-4 1.49e-1

Table 4: Prediction error of Krusell-Smith regressions
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Figure 1: Cumulative density of workers’ assets, US calibration, γ = 1
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Figure 3: Reaction to productivity shock, US calibration, γ = 1
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Figure 4: Reaction to bargaining shock, US calibration, γ = 1
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Figure 5: Reaction to productivity shock, US calibration, γ = 4
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Figure 6: Reaction to productivity shock, high u - low k calibration, γ = 1
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Figure 7: Reaction to bargaining shock, high u - low k calibration, γ = 1
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Figure 8: Transitions, US calibration, γ = 1
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A Distribution dynamics

To represent the cross-sectional distribution, we truncate the distribution of capital at
a maximum level k. The truncation point k is chosen such that in the steady state
distribution, only a negligible fraction of households is close to k. Then we split the
support into nd small intervals by a grid of points k = κ0, κ1, . . . , κnd

= k. Then we
characterize the cross-sectional distribution of wealth holdings by the employed workers
by the mass at the lower bound, φe

t (0) ≡ Φe
t (k), and the mass on the intervals φe

t (0) ≡
Φe

t(k), and the mass on the intervals φe
t (i) ≡ Φe

t (κi) − Φe
t(κi−1), i = 1, . . . , nd, which

are stacked into the vector ~φe
t ≡ (φe

t (0) , φe
t (1) , . . . , φe

t (nd)). For the unemployed, the
probabilities φu

t (i) are defined in the same way.
Next we describe the dynamics of the probabilities φe

t (i) and φu
t (i) and their associ-

ated densities. We use the fact that the time interval of the model is very short (about
1 hour!), so that the saving that a household does within a period is much smaller than
the width of the intervals (κi−1, κi). If saving is positive at κi, the flow of probability
mass from i to i + 1 is positive, since mass flows from interval (κi−1, κi) to (κi, κi+1).
Otherwise it is negative, because mass flows from (κi, κi+1). to (κi−1, κi).

Φt (i → i + 1;S) =

{

S
φs

t (i)
κi−κi−1

if S ≥ 0

S
φs

t (i+1)
κi+1−κi

if S < 0
(30)

for i = 1, . . . , nd. Since φs
t (0) describes the probability mass at the point k, we have the

special case

Φt (0 → 1;S) =

{

φs
t (0) if S > 0

kc(Ω−k)
κ1−k if S ≤ 0

(31)

The densities on the interval (κi−1, κi) is given by

f s
t (i) ≡

φs
t (i)

κi − κi−1
, s ∈ {e, u} (32)

The probabilities φe
t (i) and φu

t (i) follow the dynamic equations

φe
t+1 (i) = (1 − σ)φe

t (i) + pW
t φu

t (i) + Se
t (κi−1)f

e
t (J e

1 (2)) − Se
t (κi)f

e
t (J e

1 (2)) (33)

φu
t+1 (i) = (1 − pW

t )φu
t (i) + σφe

t (i) + Su
t (κi−1)f

u
t (J u

1 (2)) − Su
t (κi)f

u
t (J u

1 (2)) (34)

where J e
1 (2) defines the “source interval” from where the savings flow comes:

J s
t (i) ≡

{

i if Ss
t (κi) ≥ 0

i + 1 if Ss
t (κi) < 0

, s ∈ {e, u} (35)

If Ss
t (κi) ≥ 0, probability mass is flowing from interval i to i+1, otherwise the probability

flows from i + 1 to i.
The probabilities φe

t (i) and φu
t (i) are defined at the end of period t. Since it turns out

that, in equilibrium, employed workers who start with zero assets save a positive amount,
at the end of the period no employed worker ends up at the borrowing constraint:

φe
t (0) = 0 (36)

Since unemployed workers with zero capital consume all their income, we get

φu
t+1 (0) = (1 − pW

t )

[

φu
t (0)

kc(Ω − k)

κ1 − k
φu

t (1)

]

(37)
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